accellera

SYSTEMS INITIATIVE

Portable Test and Stimulus Standard
Version 2.0

April 2021

Copyright © 2021 Accellera. All rights reserved.

Portable Test and Stimulus Standard 2.0 — April 2021

Abstract: The definition of the language syntax, C++ library API, and accompanying semantics for the
specification of verification intent and behaviors reusable across multiple target platforms and allowing for
the automation of test generation is provided. This standard provides a declarative environment designed for
abstract behavioral description using actions, their inputs, outputs, and resource dependencies, and their
composition into use cases including data and control flows. These use cases capture verification intent that
can be analyzed to produce a wide range of possible legal scenarios for multiple execution platforms. It also
includes a preliminary mechanism to capture the programmer’s view of a peripheral device, independent of
the underlying platform, further enhancing portability.

Keywords: behavioral model, constrained randomization, functional verification, hardware-software inter-
face, portability, PSS, test generation.

Copyright © 2021 Accellera. All rights reserved.
2

Portable Test and Stimulus Standard 2.0 — April 2021

Notices

Accellera Systems Initiative (Accellera) Standards documents are developed within Accellera and the
Technical Committee of Accellera. Accellera develops its standards through a consensus development pro-
cess, approved by its members and board of directors, which brings together volunteers representing varied
viewpoints and interests to achieve the final product. Volunteers are members of Accellera and serve with-
out compensation. While Accellera administers the process and establishes rules to promote fairness in the
consensus development process, Accellera does not independently evaluate, test, or verify the accuracy of
any of the information contained in its standards.

Use of an Accellera Standard is wholly voluntary. Accellera disclaims liability for any personal injury, prop-
erty or other damage, of any nature whatsoever, whether special, indirect, consequential, or compensatory,
directly or indirectly resulting from the publication, use of, or reliance upon this, or any other Accellera
Standard document.

Accellera does not warrant or represent the accuracy or content of the material contained herein, and
expressly disclaims any express or implied warranty, including any implied warranty of merchantability or
suitability for a specific purpose, or that the use of the material contained herein is free from patent infringe-
ment. Accellera Standards documents are supplied "AS IS."

The existence of an Accellera Standard does not imply that there are no other ways to produce, test, mea-
sure, purchase, market, or provide other goods and services related to the scope of an Accellera Standard.
Furthermore, the viewpoint expressed at the time a standard is approved and issued is subject to change due
to developments in the state of the art and comments received from users of the standard. Every Accellera
Standard is subjected to review periodically for revision and update. Users are cautioned to check to deter-
mine that they have the latest edition of any Accellera Standard.

In publishing and making this document available, Accellera is not suggesting or rendering professional or
other services for, or on behalf of, any person or entity. Nor is Accellera undertaking to perform any duty
owed by any other person or entity to another. Any person utilizing this, and any other Accellera Standards
document, should rely upon the advice of a competent professional in determining the exercise of reasonable
care in any given circumstances.

Interpretations: Occasionally questions may arise regarding the meaning of portions of standards as they
relate to specific applications. When the need for interpretations is brought to the attention of Accellera,
Accellera will initiate action to prepare appropriate responses. Since Accellera Standards represent a consen-
sus of concerned interests, it is important to ensure that any interpretation has also received the concurrence
of a balance of interests. For this reason, Accellera and the members of its Technical Committees are not
able to provide an instant response to interpretation requests except in those cases where the matter has pre-
viously received formal consideration.

Comments for revision of Accellera Standards are welcome from any interested party, regardless of mem-
bership affiliation with Accellera. Suggestions for changes in documents should be in the form of a proposed
change of text, together with appropriate supporting comments. Comments on standards and requests for
interpretations should be addressed to:

Accellera Systems Initiative.

8698 Elk Grove Blvd Suite 1, #114
Elk Grove, CA 95624

USA

Note: Attention is called to the possibility that implementation of this standard may require use of
subject matter covered by patent rights. By publication of this standard, no position is taken with
respect to the existence or validity of any patent rights in connection therewith. Accellera shall not

Copyright © 2021 Accellera. All rights reserved.
3

Portable Test and Stimulus Standard 2.0 — April 2021

be responsible for identifying patents for which a license may be required by an Accellera standard
or for conducting inquiries into the legal validity or scope of those patents that are brought to its
attention.

Accellera is the sole entity that may authorize the use of Accellera-owned certification marks and/or trade-
marks to indicate compliance with the materials set forth herein.

Authorization to photocopy portions of any individual standard for internal or personal use must be granted
by Accellera, provided that permission is obtained from and any required fee is paid to Accellera. To arrange
for authorization please contact Lynn Garibaldi, Accellera Systems Initiative, 8698 Elk Grove Blvd Suite 1,
#114, Elk Grove, CA 95624, phone (916) 670-1056, e-mail lynn@accellera.org. Permission to photocopy
portions of any individual standard for educational classroom use can also be obtained from Accellera.

Suggestions for improvements to the Portable Test and Stimulus Standard 2.0 are welcome. They should be
posted to the PSS Community Forum at:

https://forums.accellera.org/forum/44-portable-stimulus-discussion/

The current Working Group web page is:
http://www.accellera.org/activities/working-groups/portable-stimulus

Copyright © 2021 Accellera. All rights reserved.
4

Portable Test and Stimulus Standard 2.0 — April 2021

Introduction

The definition of a Portable Test and Stimulus Standard (PSS) will enable user companies to select the best
tool(s) from competing vendors to meet their verification needs. Creation of a specification language for
abstract use-cases is required. The goal is to allow stimulus and tests, including coverage and results
checking, to be specified at a high level of abstraction, suitable for tools to interpret and create scenarios and
generate implementations in a variety of languages and tool environments, with consistent behavior across
multiple implementations.

This revision adds new features, corrects errors, clarifies aspects of the language and semantic
definitions, and reorganizes some sections relative to version 1.0a of the Portable Test and Stimulus
Standard (February 2019). The new features include (by section number):

— 48

0
00

o0
\O

|
—_
S |
-

I
—_ = = = = =
A | W W
— N N

|

[
9,
[\

|
f—
-
—
o]

—_
~
[—
—_—

b
NI\ I S
—_ = =
N = =

EENI N

|

N
[\
[
(98]

]
NIRRT
SIS RS
Lo o fio
(O VN V)

|
‘l\)‘l\)
= S

~

Aggregate literals

Collection types and the operators and methods that each supports
Reference types

Pure components

Actions may now include more than one activity statement
Template types

Action handle array traversal

Fine-grained scheduling specifiers

replicate activity statement

Arrays of flow object references

Arrays of resource object references

forall constraints

Default value constraints

Nested packages

Package aliases

Added rules for declaration and reference ordering
init_down and init_up exec blocks

Default function parameter values

Generic and vararg function parameters

Pure functions

PSS native functions

Abstract procedural constructs in exec blocks

PSS core library

Copyright © 2021 Accellera. All rights reserved.
5

Portable Test and Stimulus Standard 2.0 — April 2021

Participants

The Portable Stimulus Working Group (PSWGQ) is entity-based. At the time this standard was developed, the
PSWG had the following active participants:

Faris Khundakjie, Intel Corporation, Chair
Tom Fitzpatrick, Siemens EDA, Vice-Chair
David Brownell, Analog Devices, Inc., Secretary
Shalom Bresticker, Technical Editor

Aedvices: Francois Cerisier

Agnisys, Inc: Rajat Bagga, Yash Bharal

AMD: Prabhat Gupta

AMIQ EDA: Tom Anderson, Adrian Simionescu

Analog Devices, Inc: Gaurav Bhatnagar, David Brownell

Breker Verification Systems, Inc.: Leigh Brady, Adnan Hamid, David Kelf
Cadence Design Systems, Inc.: Angelina Silver, Matan Vax

Intel Corporation: Ramon Chemel, Michael Chin, Faris Khundakjie
Qualcomm Incorporated: Sanjay Gupta, Kunal Kulnari, Santosh Kumar
Semifore, Inc.: Jamsheed Agahi, Josh Rensch

Siemens EDA: Matthew Ballance, Tom Fitzpatrick, Amit Garg
Synopsys, Inc.: Hillel Miller, Sumant Sathe

Vayavya Labs Pvt. Ltd.: Karthick Gururaj

Xilinx, Inc.: Georgios Karyotis

At the time of standardization, the PSWG had the following eligible voters:

Agnisys, Inc Qualcomm Incorporated
AMIQ EDA Semifore, Inc.
Analog Devices, Inc. Siemens EDA

Breker Verification Systems, Inc. Synopsys, Inc.
Cadence Design Systems, Inc. Vayavya Labs Pvt. Ltd.

Intel Corporation Xilinx, Inc.

Copyright © 2021 Accellera. All rights reserved.
6

Portable Test and Stimulus Standard 2.0 — April 2021

Contents
LISt OF fIZUIES ..ttt ettt h et h et e b et sb et s ate s bt s et e s bt e st e s bt e st e ebeenteebeenteeae 18
5 o G 721 o) TSRO PSRUPRPSTRPTE 19
LSt O SYNEAX EXCETPES -.euvveutieuieiieieetieteetterte et te et st esteeste bt esee st e te e st e seeseenseeseenseeneesseeneesseensesseensesseensesseanseans 20
LISt O @XAMIPIESvivieiiieeietieeieete ettt ettt ettt ettt a et e e b e te e b e st eabeeseesbeeseesseesaesseessesasesseseessesseessenseenseans 24
1. OVEIVIEW .. veeuteittentesiteteeetete et e st estesseesseestessesssensesssassesssenseessanseessanssensenssasseessenseassensesssessennsessennsensenns 32
Lol PUIPOSE .ottt ettt ettt ettt et et e et e s et e et e e sht e ea bt e bteeabeesateeabeesabeenbeesabeenbeennee s 32
1.2 Language design CONSIACTAtIONS.......cc.iiieruerieriieierieetesteetesseeteeteesseeseessesseesseessesseassessaesenseens 32
1.3 MOACIHNG DASICS...c.uveuiieeieiieiieiieieeieetesiteteste e ste e essesseessesseessesseensesseensesssessesssesseensessesssensanns 33
1.4 TeSt TEALIZATIONeveveeiieeieiieiieeie ettt et et ete st te st esteesbesteenbesteesseeseenseeseeseessesseessesseansenseessensenns 33
1.5 CONVENLIONS USEAouvievieiieiieiieieetete et esteste et esteeetesteesbesseessesseesseeseesesseessesssessesssessesssensenns 34
1.5.1 Visual cues (IMEta-SYNLAX) ...eccverrieriirrieieeiierieeieniestesteseessessessesssessesssesseessessesssenseenes 34
1.5.2 Notational CONVENLIONSc.eeverrieierrieieerierieseestestesseseessesssessesssessesssessesssessesssesseenes 35
1.5.3 EXAMPLES .ovieiiiieiieieieeet ettt ettt ettt ettt eesa et st e nteeneenneenes 35
1.6 Use of color in this Standard.............cccoecieriiieniiiieiieiereetese ettt sse e nneens 35
1.7 Contents Of this StANAArdccevieriiiieii ettt ae s sseesessaens 36
2. RETEICICESvivieiieeiieteeet ettt sttt st e e e st e et esbeesb et e enseeseesseeseesseessesseessessesssenseensensaans 37
3. Definitions, acronyms, and abbreViationsS..............ccevierverieerieriesiieieieeeeseeeeseeeee e eeesseesessaensesseens 38
TN B B 1< 1Y 1 o) s TP 38
3.2 Acronyms and abbreviationsc.cceeveriieieriieiertieiesteete st eseeseeaeseessessaesessaeseessenseessenseenns 39
4. LeXICAl CONVENMLIONSveeiviiieiieiieiiettete ettt et este et e steesaesteeetesseesseesaenseeseesseessesseaseessesnsessesssessesssensanns 40
4.1 COMIMENES. ...eeutieiieeiieetie et ette st et tesete e et e sttt e beeeateesbeesateenseesateenseesaseenbeesasesnbeesabesnseeseseenseenseean 40
N U (<31 U 1<) ¢~ USRS SPRUPR 40
4.3 ESCAPEA IACNLITICTSveeuveeieiiieiieiieieic ettt ettt ettt e e e teesseeseesseeseesseensesseensessaensensanns 40
4.4 KEYWOIAS .ouveiieiieiieieeieett et ettt e et et e st este st e beesaebeesse s e esbe et e enseessessesssessessaessesssessenssesseensensanns 41
I 0375 ¢ 110) ¢SOOSO PR STUUSRRPP 41
4.0 INUIMIDETScuveiieiieiieiieitett et eeteete et esteseteaeseeesbeesaesseesseseessenssesseassessesssensesssessesssessennsenseensensenns 42
4.6.1 Using integer literalS in XPreSSIONSccvveverveecverieerreeeeneeeeesseeeesseessesseessessaessensanns 43
4.7 SHNG TEETALS 1..eevveeiieiieieetiei ettt ettt e et e et e et e e teesseeaeesseeseesseensessaessenseensensanns 43
N R < 1111 o) (<R PSRPURUTRSRRP 45
4.8 AGEregate LItETALSocuveiieiieiiciieieeiec ettt b e sre et e reesessaenbenraens 45
4.8.1 Empty aggregate LIteralccoocieiieriiiiieiieiesieeieseete ettt snaens 45
4.8.2 Value List LIEEIalScceecieriieiieieiieiiesie sttt ettt sa e s sae e e sseeaessaensensnens 46
4.8.3 MAP LIEIALS ..veeiieeieiieiiecieeie ettt ettt ettt b e e b e e e sseenaeeseensenseens 46
4.8.4 SrUCHUIE TILEIALS ..ueevieeiiiieieeiieie ettt ettt ettt et s e saeeseesseesaesseenaessaensenseens 47
4.8.5 Nesting aggregate lItEralSccceecieririiereicierieeciesieieeeeteeee et e e eee e esaesseessensnens 47
5. IMOACING CONCEPLS ...vveuveeientieiietieteetteteeteteste st stesseestesteessesseessesseensesssessesssessesssessesssessesssessesssensenns 48
5.1 Modeling data fIOWc.cceevieieieiiiieieciee ettt ettt ettt e et ens s enes 49
TN I O 211§ 3 =TT 49
5.1.2 SHICAIMS eveeuiieiieetieeite ettt ettt et ettt et et e st et esa bt e bt e sab e e bt e sabeeabee s et e ebeesnbeenbeenaren 50
5.1.3 SHALES weeitieiieciie ettt et sttt e st b e st e e beesabeebeesnbeenbeenaren 50
5.1.4 Data flow ODJECE POOIS ..viveieiiieieiiieiieiietieiete ettt ettt te e seesaeseenes 51
5.2 MoOdEling SYSEIM TESOUICTESveeuverrrerrerrreieeirereesresseesresseessesseessesseessesseessesssessesssessenssessessensesnes 51
5.2.1 RESOUICE ODJECLS .eveviriieriieiieeiieieeiieieetteteeeteteeseesseestesseessesseessessaessesssessesssensenssensennes 51

Copyright © 2021 Accellera. All rights reserved.
7

Portable Test and Stimulus Standard 2.0 — April 2021

5.2.2 RESOUICE POOIS ..oeeiiiiiieitieieiiee ettt ettt sttt sttt e st e e st e e e s et e eneenneenes 51
5.3 Basic building DIOCKScoouiiuiiiiiieie e 52
53.1 Components and biNdiNGccoceeririeiirienieere et 52
5.3.2 Evaluation and iNfErencecoereviiiieiiiiriiniiieencnesteccecereee et 52
5.4 Constraints and iNfEreNCINGc.eceiiiirieiieiei ettt see s 54
5.5 SUMIMATY .eeiiiiiiiieee ettt et ettt e sb e st e bt e sa bt e bt e sate e bt e sabesabeesabesnbee e 54
EXecution SEMAaNtiC CONCEPLSvieuuirrieiieietieiierteeiesteete st etesteenteeseeeeeneen et eneesseeneesseeneesseensesneensesseens 55
0.1 OVEIVIEW w.niiiiiiieieeieeterte sttt ettt ettt a et st sttt st ettt et et et st ebeebeebesaesbenbenee 55
6.2 Assumptions of abstract SCheduling..........cccoeririerieiiii e 55
6.2.1 Starting and ending action EXECULIONSccevueeieruierieriieierieerieseeieeeenieeeeseeeneeeeeenes 55
0.2.2 CONCUITEIICY ...eeeuveeiieenteenitenittenite et e bt e eteesbtesabeesbeesateesbeesate e bt eeaseebeesabeebeesbseebeenaeean 55
6.2.3 Synchronized INVOCATIONccceruieiiereieriieiert et eie sttt eee sttt et e enee e enes 55
6.3 SChEULING COMCEPLSueeeeeieiieieetiete ettt ettt ettt ettt et saeenaesseebe e st enseeseenseeneenseeneeneeenes 56
6.3.1 Preliminary definitionsccceeoeruieiieeiieriieiere ettt 56
6.3.2 Sequential SChedUIINGccoiieiiiiieieeee e 57
6.3.3 Parallel SChedULINgcccoeoiiieieeiieeeieee ettt 57
6.3.4 Concurrent SChedUIINGcceiuieiieriieiieiieieee e 57
Gt SPECITICS ettt ettt ettt ettt ettt ettt ettt et e et et e ent e et e en e e ea e e et ene e et eneenaeenteeneenteaneenneereen 58
Tl GRNCTAL .ttt ettt e bbbttt ettt a ettt et r b e 58
7.2 PSS/DSL features not supported in PSS/CH ..o 60
D 17 18 01 OO OO OO SO O PRSP PTOPRRRPPUP 62
Bl GENCIAL .ttt ettt ettt ettt sa e r b e 62
8.1.1 DISL SYMEAX .ottt ettt sttt ettt et et e it s 62
I 11T o (o 7 1 PP 63
8.2.1 DISL SYMEAX oottt ettt ettt ettt ettt naee s 63
8.2.2 CHE SYMEAX .eiiiiiiiiiieiitet ettt ettt b e sttt e b e st et sbt e e be e it s 64
T T 2 €: 1111 o) (1 PRSP 66
8.3 BOOICANS ...ttt ettt st 67
T 25 1101103 11034 I g 01 PSS 67
841 DISL SYMEAX oottt ettt ettt sttt st be et s 67
842 CHE SYMEAX .eiiiiiiiiiie ittt ettt sttt ettt e b e st ettt et e it s 68
TG N 2 €: 1111 o) (1 SRS SRPS 69
TR TIN5)4 4SS 70
8.5.1 DISL SYMEAX .eiiiiiiiiiiiiiteteee ettt ettt et ettt beenaee s 70
8.5.2 CH SYMEAX oottt ettt ettt ettt ettt ettt e it s 70
TR TG T 2 €: 1111 o) (1P 71
80 CRANAIES ...ttt ettt ettt st r e 72
8.0.1 DISL SYMEAX oottt ettt sttt ettt st s 72
8.0.2 G SYMEAX .eiiiiiiiiiiieiieeteet ettt ettt ettt b e ettt et sttt sbb e beenaee s 72
I TG T 2 €: 1111 o) (PR 73
8.7 SHIUCES .ttt ettt e st e st ae e 73
8.7.1 DISL SYMEAX .ottt ettt ettt ettt et be it s 73
8.7.2 G SYMEAX .eiiiiiiiiiie ittt ettt ettt e b e sttt et st ettt e it s 74
TN TR 2 €111 o) 1 PP 75
8.8 COIIBCLIONS ...ttt ettt st sttt ettt ebe et be st r e 76
8.8.1 DISL SYMEAX oottt ettt ettt ettt be it s 76
Bi8.2 AITAYS ittt st ettt e b e st ettt b e it s 77
883 LSSttt ettt ettt et 81

Copyright © 2021 Accellera. All rights reserved.
8

10.

Portable Test and Stimulus Standard 2.0 — April 2021

B8i4 IMAPS ettt et ettt ettt ettt et esbbeebeenaee s 85
B8 SIS ittt ettt et es et be e naen 88
IR] 153 (o)1 TSI A 1SS 91
8.9.1 DISL SYMEAX .eiiiiiiiiiiiiiieteete ettt sttt ettt ettt ettt be e it s 91
E IR T 2 €: 1111 o) (1SR S 91
8.10 User-defined data fFPeScuevuieierieieeiiee ettt ettt sttt et e e ene et et neeenes 93
8101 DISL SYMEAX oottt ettt sttt st ettt ettt et sttt e sbt e be e it s 93
8.10.2 G SYNEAX oottt ettt ettt ettt ettt e b e sttt sbt e beesaee s 93
I O T 21111 o) 1 RS RPR 93
8.11 Data tyPe COMVETSIONeeuieiereieieetieteeteeteettenteentesteeneeseeeneesseeeesseensesseesesseenseeseenseeneenseensenseenes 93
111 DISL SYMEAX oottt sttt ettt et e st et e st et sbb e e be e it s 93
T8 O O 2 €111 o) 1SR 94
OPErators and EXPIESSIONSvervieiirrieieetieteetiertesterteetesteeatesseentesseenseeseenseeneesseeneessesnsesseensesseesesseans 95
0.1 DISL SYNEAX .eeuttiiuiieiteeieeiite ettt ettt ettt st e sa e et e bt e st e bt sat e e bt e sa bt e bt e sat e e bt e sate e beesabeebeenae 95
LB 0103 1 1 1 A1 4 o) (113 o) o PP 95
0.3 ASSIZNMENE OPETALOTS ...euvieueeeientertieteetieteeteeteestesteentesseeneesseesesseensesseesesseenseeseenseeneenseeneenseenes 96
LR B 48] (T (021 0] 0T o) ¢SRS 96
9.4.1 Operator precedence and aSSOCIALIVILYeeueerueeieruierieriieieeeeiesteie et 97
9.4.2 Using aggregate literals in eXPIeSSIONScecveeereeierieriereerieseeieeeenieeeesee e seeens 98
0.4.3 Type INFEreNnce TULEScc.eriiiiieieeiieeet ettt sttt et enes 99
9.4.4 Operator expression ShOrt-CIrCUITINGccueeveriieriirieiieiee et 101
L @ 1<) 21 {0 e (1T oy 1 015 (o) -SSP 101
9.5.1 ArithmetiC OPETALOTSc.eiieriiriieitieiierteeitesieete et et et eeesteeeeseeeeesaeeneesneenaesneenseeneans 101
9.5.2 Relational OPEIatOrScevirieiiieieitieieseee ettt ettt st sae st sae e seeneens 102
0.5.3 EQUAlItY OPETALOTS ..eeoveeiieeieieeiieteeiiesteeite st ete et eete et et e seeeeesneeaesneenaesneensesneenseeneans 103
0.5.4 LOGICAL OPCTALOTSeevieiieiieieiiieieeiienteette it e et et et e e see et e sneenaesseenaesseensesneensesneans 104
0.5.5 BItWISE OPCTALOTS ..cueervieiiiiieieeiieteeiienteettesteente bt entesteeneeseeeneesneensesneensesseensesneensesneens 104
0.5.6 RedUCHION OPETALOLSeccuiruieieiiietieiiesteeite it et et et et et e et et e et eaesneesaesneenaesneenseeneens 105
0.5.7 SHift OPETALOTS ...o.vieiiieieieeeieie ettt ettt et ettt et e st eaesaeeaesseeeseeneenseeneans 106
0.5.8 Conditional OPEIALOTecceeiuiruieieiriierteeierteeee ettt et et ete et st eae st e saesseesaesneesseeneens 106
9.5.9 Set MembErship OPEIatorccciriiriieieiieiese ettt eneens 106
0.6 PriMAary EXPIESSIONS ...c.eeiueeruerrieeietietieienteenteeteeteeseeeeeneessesneesseessesseensesseenseeseanseeneeseeneenseeneas 108
9.6.1 Bit-selects and part-SEIECESccerueririeriieieeieeee et e 109
9.6.2 Selecting an element from a collection (INAEXING)cceeveverriereeieneeiereeiereeans 109
9.7 Bit 5izes fOr NUMETIC EXPIESSIONS....c.ueeueetieieetieteereerteeeerteetesseeeesseesesseeneeeneeseeneesseeneesseenees 109
9.7.1 Rules for eXpression DIt SIZESccccverereereerieriieierieeeeeteeeeeeeeeesee e sree e seeesseeneens 109
9.8 Evaluation rules for NUMETIC EXPIESSIONSccueervirreereieierieeiesteeeesreeeeereeeeeseeeeeneeseeeneeseeeneas 110
9.8.1 Rules for eXpression SIZNEANESSccevverieerieriierierieieeeereeseeee e nee st seesee e eneens 110
9.8.2 Steps for evaluating a NUMETIC EXPIESSIONeerveeuerreeeeirieeeeeieeneeeeeneeeneeseeseesseeneens 111
9.8.3 Steps for evaluating an asSiGNMENTcceeveerierierieieieieeeeeere e see et seeseeneens 111
COIMPOTIEIIES ..ottt et et et e st et e sat e bt e sb et e bt e sut e et e esbteeabeesbbeeabe e bt e sabeebeesabeesbtesateenbaesaseenses 112
TO.T DISL SYNEAX ..eiuitiiiiiiiiieieesite ettt ettt ettt ettt e sbt e sab e sbt e st e beesabe e bt e sabeenbeesateenbaeeabeenbee 112
TO.2 Gt SYNEAX weeiiiiiiiiiie ettt ettt ettt ettt e bttt e s bt e sab e s bt e et e bt e et e e bt e sab e e bt e sateenbaeeabeenbee 113
L 21101 o) USRS 114
10.4 CompOonents as NAMESPACES ...cc.verureerureerueerteerrueenteerteesstesteessseesseesseessseesseesseesseessseessaessseenses 114
10.5 Component INSTANTIATIONecveeuieriieiertieierteete st eee st ete st eee s eeste st e teeneeeeeneenseeneeseeeneesseeneas 116
JO.5.1 SEMANTICS .eeoueeiiriiiiietieierientetetet ettt ettt ettt sttt sttt et eneebeebesue e 116
10.5.2 EXAMPLES ..eeiiieiieiieieeiieeee ettt ettt ettt en ettt et sne s 116
10.6 COMPONENE TEIETEICES ... evieuiietieiieiiett et ettt ie st e et e et e et en e ene e teeneesteeneeseeeneesneeneas 117
J0.6.1 SEMANTICS ..eoveeuiriiriietieienientete ettt ettt ettt sttt st ettt se et eneebeebesae e 117

Copyright © 2021 Accellera. All rights reserved.
9

11.

12.

13.

Portable Test and Stimulus Standard 2.0 — April 2021

10.6.2 EXAMPLES ...eeiiieiieiieieeiieeee ettt ettt ettt s ettt ene s 117
10.7 PUIE COMPONENLS ..cuvviuiieiiieitieniteeteeniteei ettt et esttesbeesste st e esbtesabeesbeesabeebeesabeenseesateenbaesaseenses 119
ALCHIONS 1.ttt ettt ettt ettt et e b e bbbt a e e et bt e et ae et eae bbb e 120
T1.T DISL SYNEAX c.tinitiiitiiiiieieesite ettt ettt ettt ettt st e bt st e s bt e et e b e e s abe e bt e sabeenbeesateenbaesabeenbee 121
L O O e) 117 O OO OO PTTPORU PO RP PO TUPRUPRN 122
LI T 2 1101 o) USSR 122
11.3.1 ALOIMIC QCTIONS ..vevieriiitititeieteteteeeieeit ettt st sttt sttt ee e ese st eneebeesesuesaeas 122
11.3.2 COmPOUN ACLIONSovieiiitieiietieieeiiesteete st ete st eee st e eae st e e e seenteeneenseeneenseeneesseenees 123
11.3.3 ADSIIACT ACTIONS ...euvirireieiiteieteiieiteteieeie ettt ettt st sae et sttt et eseeaeeneebee e sue e 124
B 100 0) LT o PSRRI 125
12,1 GENETAL ...ttt ettt sttt ettt ettt 125
12.2 Template type declarations.........c.ecueeieruieierieie ettt ettt see e sne s 125
12.2.1 DISL SYNEAX weeiutieiieiieeieenite ettt ettt ettt ettt sbe e st e bt e sateesbeesaeeebaesbeenee e 125
L0220 25 < 111 o) Ut PSRRI 126
12.3 Template parameter deClarationsc.eceeeerieriereriere ettt e e ee e 126
12.3.1 Template value parameter declarationsccocceeeeririereeienieeiese e 126
12.3.2 Template type parameter declarationscocceocereereriereeienieiene e eeeenes 127
12.4 Template type INStANTIATIONeeuieeieieeieiesee ettt ettt et e see et esaeeneesneeneas 129
12.4.1 DSL SYNEAX .eeevuiiriieiiieeieenite ettt ettt ettt ettt st e bt st e bt e sate e bt e saeeebaesteenee e 129
|0 3 25 111 o) Ut PSRRI 130
12.5 Template type USET TESLIICTIONSevieuiereieierieeieseteee et ete st ete et tete et e e et eeeeneeseeeneeseeeneesneeneas 131
ACHIVIEIES 1.ttt sttt ettt ettt et e bbbt bttt b et ne et et aeeaeeae bbb e 132
13.1 ACtIVILY dECIATALIONSeeueitieiiieeieii ettt ettt ettt et et e e e e seeeneesneeneas 132
13.2 ACHIVIEY COMSIIUCES. ..uuetieuiietieteetieteettenteeetesteetesteeneesteenaesseensesseeneeeseenteeseenseeneeseeneesseeneenseeneas 132
13.2.1 DISL SYNEAX weeeutieiiieiiieieeite ettt ettt ettt et ettt st e sae e st e bt e st e nbeesateebaesbeebee e 133
13.2.2 G SYMEAX weeeieiiiieeiieeieeei ettt ettt et ettt st e bt st e bt e s et e bt e sate e beesbeebee e 133
13.3 Action scheduling StatemMENtS...........ccueruieierieie ettt 134
13.3.1 Action traversal StateMENtc..ccuevuerieiririirininere ettt 134
13.3.2 Action handle array traversalccooceeoiiieiiiiee e 139
13.3.3 Sequential BIOCKcc.ooieiiiieieet e 141
L A o -1 1 1 <) PSSR 143
13.3.5 SCREAUIE ...ttt 146
13.3.6 Fine-grained scheduling SPeCifiersccccooevieiiiieiinieeeeeeee e 151
13.4 Activity cOntrol flOW CONSIITUCESeeeertieieriieiesiieie sttt ettt e e eneas 160
13.4. 1 1EPEAL (COUNL) oruiiiieiitieieetiete et ce sttt ettt e st et e st e e st e e e e st ente e st enteeseeneeeneenseeneesneennes 160
13,42 1ePAt-WHILE ..ot 162
13.4.3 FOTCACK ..ottt ettt ettt 164
13.4.4 SCIECT ettt ettt ettt ettt 166
I3.4.5 G-CISE et ettt 170
13.4.6 MALCH .oouiiiiiiiiciieiceet ettt ettt ettt e 172
13.5 Activity CONSIrUCtION StALEIMEIESeeueeeieiiereieieeeieie et ete st ete ettt et ene et eneeseeeneeseeeneesneeneas 175
L e B (< o) o7 PSSR 175
13.6 Activity evaluation with extension and inheritancec.ccoeeveierierieeneeereee e 179
L AN 7 14 Lo) RSP SPI 181
13.7.1 DISL SYNEAX .eeeiiieiiieiiieieeite ettt ettt ettt ettt st sbe e st e bt e st e sbeesaeeebaesabeenee e 181
13.7.2 A SYNMEAX weeiiieiiieiieeieeite ettt ettt ettt e sb e st e bt st e sbt e sat e nbtesate e beesbeebeena 181
0 0 T 2 111 o) Ut PSRRI 181

Copyright © 2021 Accellera. All rights reserved.
10

14.

15.

16.

Portable Test and Stimulus Standard 2.0 — April 2021

13.8 NAMEd SUD-ACHIVILIES ...c.viviieiiieieiet ettt ettt ettt eae e
13.8.1 DISL SYNEAX ..eeiuiieiiiiiieieenite ettt ettt ettt ettt sttt st e sbt e st e sbe e saee e b e sabeebee e
13.8.2 Scoping rules for named SUD-aCtiVITIEScccereereireieieriierieeiee e enes
13.8.3 Hierarchical references using named Sub-activityc..cccceeveerverienieseeneenieneenne.

13.9 Explicitly binding floW ODJECSeeeeruieieriieieeiiee ettt
13.9.1 DISL SYNEAX ..eerutieiieiiieieenite ettt ettt ettt ettt st sbe e st e bt e sat e sbtesateebaesbeebee e
13092 CHF SYMEAX weeiiiiieiiieiiieeieeeite ettt ettt ettt ettt e bt st e bt e st e bt e sate e beesbeebee e
13.9.3 EXAMPLES ..eeeeieiieiieieetiee ettt sttt n ettt e ene s

13.10 Hierarchical flow object DINAING.......cccouieiirieieriee et

13.11 Hierarchical resource object BINding.........ccocveruerieiiiieieiiee et

FLOW ODJECES ..ttt ettt ettt ettt et s et et e et e e e st et e ese et e e st e st eneenseeneenneeneenneeneas

L B 23) o] o <!t 1SRRI
T4 1.1 DSL SYNEAX .eeeruiiriiiiiieeieeite ettt ettt ettt ettt st ettt e bt e st e bt e sateebaesabeebee e
T4 1.2 G SYNMEAX weeeieiiiiieiiieeieeeite ettt ettt ettt et b e st e e bt e st e bt e sabe e bt e sateenbeesbeebeenas
0 G T 2 111 o) Ut PSRRI

14.2 SHICAM ODJECES ...ueetieuieitieieetiete et et ette et e ee st et e st e et e ste e e s st ente e st e eeeseenteeseenteeneenseeneesseeneenseeneas
14.2.1 DSL SYNEAX ..eeoutieiiiiiieeieenite ettt ettt ettt ettt sbe e st e bt e sateesbeesateenbaesbeebee e
14.2.2 G SYNEAX .eeiiiiiiiieiiieeieeeite ettt ettt et ettt e sb e st esbe e st e e bt e sat e e bt e sateenbeesbeebee e
| 3000 T 25 111 o) Ut PSSR

L B 1l o) o) [1 TSP
T4.3.1 DSL SYNEAX .eeiiutiriieiiiieieenite ettt ettt ettt ettt sttt st e sbt e st e bt e sateebaesabeebee e
T4.3.2 A SYNEAX weeiiiieeiieiiieeieeeite ettt ettt ettt e bt st e bt e st esbtesat e e bt e sateebeesbeenee e
7 300 0C T 25 111 o) Ut PSRRI

14.4 USING flOW ODJECLS.....ueitieieetieiietieie ettt ettt ettt et e e s et e et en e e s et e eseeneeeneeseeeneesneeneas
1441 DSL SYNEAX ..eeiutiriiiiiieeieenite ettt ettt ettt ettt st ettt e bt e sate e bt e sateenbaesabeebee e
T4.4.2 G SYNEAX .eeeieiieiieiiieeieeeite ettt ettt et ettt sb e st e bt e st e sbtesat e e bt e sate e baesbeennee e
3 T 2 111 o) Ut PSRRI

RESOUICE ODJECLS ...ttt ettt ettt ettt st ettt e e s bt e e e st et e e s et e eneeteeneenseeneenneeneas

15.1 Declaring reSOUICE ODJECLSc.eeuieriieiertieiereieiestteee st ete st eee st e et e e et eteeneeseeeneeseeeneesseeneas
I5.1.1 DISL SYNEAX .eeeruiiriiieiiieieenite ettt ettt ettt ettt sttt st e bt e sat e sbtesateenbeesabeenee e
I5.1.2 G SYMEAX weeiiiiieiieiiieeieeite ettt ettt et ettt ettt e bt e st e bt e sat e e bt e sate e beesbeebeeeas
S G T 2 111 o) Ut PSRRI

15.2 Claiming reSOUICE ODJECESeeuvrruieiieietieierteeiesteeee st etesseetesseetesseenteeneeteeneenaeeneeseeeneesseeneas
15.2.1 DISL SYNEAX .eeiiutiiiieiiieieenite ettt ettt ettt ettt sttt st e et e st e bt e sateenbaesbeenee e
15.2.2 G SYNMEAX weeiiiiiiiieiiieeieeeite ettt ettt ettt ettt st esbe e st e bt e sat e sbtesate e beesbeebee e
15.2.3 EXAMPLES .oeeoiiiieiieieciee ettt ettt n ettt ene s

POOLS ettt ettt ettt b e b b e

TO.1 DISL SYNEAX ..eiuitiiiiiiiiieieeeite ettt ettt ettt ettt e bt st e s bt e et e beesabe e bt e sabeenbtesateenbaeeabeenbee

T6.2 Crb SYNEAX Leeiiiiiiiiiie ettt ettt ettt ettt ettt e s bt e eab e e s bt e e bt e be e et e e bt e st e e bt e sa b e e nbaeeabeenbee

L T 2 1101 o) USRS

16.4 Static pool DINding AIrECHIVEc.eeruieieriieieri ettt ettt ee e eneas
16.4.1 DSL SYNEAX ..eerutiiieiiiiieieeeite ettt ettt sttt ettt st ettt e bt st e bt e sateebaesbeebee e
T6.4.2 G SYNEAX .eeiiiiiiiieiiieeieenite ettt ettt e s e et e bt st esbe e st e sbtesat e e bt e sabeenbeesabeenee e
16.4.3 EXAMPLES ...eeoeiiiiiieieeieeee ettt sttt n ettt et e sne s

16.5 Resource pools and the instance id attributecooceeviiieiiiieiieeeeeee e

16.6 Pool of states and the initial AtrTbULEc.cccveiririririiiiiree e

Copyright © 2021 Accellera. All rights reserved.
11

17.

18.

19.

Portable Test and Stimulus Standard 2.0 — April 2021

Randomization Specification CONSIITUCESeeruirierierieie ettt see s
17.1 AlEDIaic CONSIIAINESeeuietieiietieiieiieteeie st ete st e e steete s et eee s s eente e st enteeneeneeeneenseeneeseeeneesseeneas
17.1.1 MeEmDbEr CONSIIAINES ...ecveviiireieieieiieteieeiteeetc ettt sttt sttt et et eaeeneeneebe e saesaens
17.1.2 Constraint iNheTitanceccccoerverierieiieirineneeeeene ettt sae e
17.1.3 Action traversal in-line CONSLIAINTSccceeveriririiririnienenireeeeerereeeeeeee s
17.1.4 Logical eXpression CONSIIAIMNESceverieiereerierieeiesieeieeteeteeeeeeeeseeneeeeeseeeeeseeenees
17.1.5 Implication CONSLIAINESceeruierieriieeiereeierteeee st eee st eae et et ne et eseeee et e seeeneesseeneas
17.1.6 1f-€IS€ CONSLIANES ...ecvieuiiiiiteieieicieteteie ettt ettt ene e saee
17.1.7 foreach CONSIIAINESc.coeviiruerierieieieieeeieeecet ettt ettt saen
17.1.8 fOrall CONSIIAINESeovietiriiiiieieiciceetetee ettt
17.1.9 UNIQUE CONSLIAINTS ...evieiiieieiietierieeecesteete st eteste e st e et enee e enteeseeneeeneenseeneesseeneas
17.1.10 Default value CONSIAINEScc.eoveieieiieieiiininienere ettt ettt eeeene e saeas
17.2 Scheduling CONSIIAINES.c.eeitieieriieierte et eee st ee st ete st ete st e et en e ese et e eneesaeeneeseeeneesneeneas
17.2.1 DSL SYNEAX weeiitieitieiiieeieeite ettt ettt ettt ettt sttt st e bt e sat e sbaesateenbaesabeeneenas
| R 25 < 111 o) U< PSSR
17.3 Sequencing constraints 0N State ODJECESc.eerieruierieriierieeieie et ieie et
17.4 RaNAOMIZALION PIOCESSeevveeurierieeieuietieniesteetestteeesteesesseesesseenseeseenseeneenseeneesseeneesseeneesseenees
17.4.1 Random attribute fleldsccccoeviiiiiiiiiiiiiiineecccereeeeeee e
17.4.2 Randomization of flOW ODJECESc.eeeeruiriieriieieiiee e
17.4.3 Randomization Of reSOUICE ODJECEScueeieruiriieriieieieieie ettt
17.4.4 Randomization of component assigNMENtcceeeeruerriereeeienieerienieeeeseeeeeseeenees
17.4.5 Random value selection OTdErc..ccccceeirveriririerinineneneteteeeeereeeeeeee e
17.4.6 Evaluation of expressions with action handlesccoceiirieiiiiieniniieee,
17.4.7 Relationship 100Kaheadccorieiiiiiiiiieeeee e
17.4.8 Lookahead and Sub-aCtionscccccevveirireririnienenieeneneeeteeeeee e
17.4.9 Lookahead and dynamic CONSIIAINESccceeveeruiereeriieieniieieeieie e enees
17.4.10 pre_solve and post _solve eXec DlOCKSccooverieiiiiieiiieeeeeee e
17.4.11 Body blocks and sampling external dataccccoooeeiinieiinienieee e,
ACHION INFETENCING ...ttt ettt ettt te st e te st e te et e be e teeseenseeseenseeseenes
18.1 Implicit binding and action INFEIENCESeevverierierieieriee e
18.2 Object pools and action INFEIENCES.ecveruieiierieieriieieeeeee et
18.3 Data constraints and action INFETENCESccecvririririririneneneteereeereeee et
Coverage specification CONSIITCTS.o.uiiirierireiere et eee ettt ettt e tee et eeeeneeeeeneenaeeneesaeeneas
19.1 Defining the coverage model: COVEIZIOUPocuevuieiiriieiieiieieeiieeeeee et
TO.1.1 DISL SYNEAX .eeeutiritieiiieiieenite ettt ettt et ettt ettt sbe e st e bt e sat e e sbtesateebeesabeebee e
TO.1.2 G SYMEAX weeeiiieiieeiiteeieeite ettt ettt ettt ettt e bt st e bt e sat e e bt e sateenbeesabeeneenas
L 2 G T 2 111 o) Ut PSRRI
19.2 cOVErgroup NStANTIATIONeetieeieiieieteeieete ettt e te st e e s e et et e st et e eneeeeeneeseeeneesseeneas
19.2.1 DSL SYNEAX ..eeutiiiiiiiieieenite ettt ettt ettt ettt e sbt e st e bt e sateesbaesateenbaesbeenee e
19.2.2 G SYNMEAX .eeiiiiiiiieiiieeieeite ettt ettt ettt et e b e st e bt st e bt e s et e e bt e sate e beesbeebeeeas
L I T 25 111 o) Ut PSRRI
19.3 Defining COVErage POINTScc.eeueeriieiertieierieeiesttetesteetesseeeesseeteeseenseeseeseeneesseeneesseeneesseeneas
19.3.1 DISL SYNEAX ..eeuiiiiieiieeieenite ettt ettt ettt et ettt st sbe e st e bt e st e bt e sateenbeesbeebee e
19.3.2 G SYMEAX wveiiuiiiieeiiteeieeite ettt ettt et ettt et b e st esbt e st e bt e sat e nbeesate e baesbeebee e
L 2 0C T 2 111 o) Ut PSRRI
19.3.4 SPECIfYING DINS ...ovieiiiiieiiieiieieeiee ettt sttt es et e see e seeeneas
19.3.5 Coverpoint bin with COVergroup eXpresSSionscceeceeeereeeeneeeeenieeseeseeeseeseenees
19.3.6 Automatic bin creation for COVerage POintsccocceerereereeiereeeenieeeeseeeeeseeenees
19.3.7 Excluding coverage point VAlUESccccervierierieieriieieeiieieeieie et enees

Copyright © 2021 Accellera. All rights reserved.
12

20.

21.

22.

Portable Test and Stimulus Standard 2.0 — April 2021

19.3.8 Specifying illegal coverage point Valuesccocceveererierieieniieieeeeesee e 298
19.3.9 Value reSOIULIONoovivuiriiiiiiieiiicictceeiteee ettt 299
19.4 DefiNiNg CTOSS COVEIAZE .. .eoveeurrerietreuietieueesteetesseeeesteesesseesesseensesseenseeseeseeneenseeneesseeneesseenees 300
19.:4.1 DSL SYNEAX .eeeuiiriiiiiieieeeite ettt ettt ettt ettt sbe e st e bt e st e sbaesateenbaesbeenee e 300
1942 G SYNEAX .eeiiiiiiieiieeieesi ettt ettt ettt ettt st e bt st e bt e st e e bt e sate e baesbeebeeeas 301
L R T 25 111 o) Ut PSRRI 301
19.5 DefiNing CTOSS DINSciuieiieeieiietieiieiett ettt ee st e te st e te st e e et en e e st enteeneenteeneeseeeneesseeneas 302
19.6 Specifying COVETage OPLIONScc.eeruieiereieierieeiertteie st ete st etessee e ese e e eneeteeneeseeeneeseeeneesseeneas 303
JO.6.1 G SYNEAX .eeiiiiiiieiiieeieeeite ettt ettt ettt e bt st et esat e e sbeesateebeesabeenee e 304
L R T 25 111 o) Ut PSRRI 308
19.7 COVErgroup SAMPIINGcccuierieiieiieiieiett ettt et te st et r e te et e e e st et e eneesteeneeseeeneesaeeneas 309
19.8 Per-type and per-instance coverage COlleCtion...........coevuerieririerieieeeeeee e 309
19.8.1 Per-instance coverage of flow and resource objectsccccvvveerierieriieiieneereeneenee. 310
19.8.2 Per-instance COVErage in aCtiONSevvereeruerruerueeriestieieneieeeeneeteeneeneeeneesseeneeseeenees 311
Type inheritance, extension, and OVEITIAES.coveruirieriiiieie et 312
20.1 TYPE INNEIILANCEottt ettt sttt sttt s et e e s e et e st e et eneeseeneenaeeneenneeneas 312
20.2 TYPE EXLETISION .ueeuvienieeienieetieteeneeteette et eaeeseeeeesseenaesseetesseenseeseenseaseenseeseenseeneenseeneenseeneenseennas 320
20.2.1 DSL SYNEAX ..eiiutieiieiiiieitenite ettt ettt ettt ettt e sbte st e be e st e bt e saeenee e 321
20.2.2 G SYNEAX .eeeriieeitieiiiieitesite ettt et e st et e st e bt e bttt e bt e s bt e bt e st e bt e e te e beeeabeebeeea 321
20.2.3 EXAMPLES .oeeeiieiieiieieeieee ettt ettt e nae e naeenees 322
20.2.4 CompOoSite tyPe EXLENSIONS ..euveeueerereueerereiereeeeesteetesseetesseenseeseenseeneesseeneesseensesseenees 323
20.2.5 Enumeration type eXtENSIONSccceereerrereereereerieeeesteeiesseeeeeseeneeeneesseeneesseesesseenees 326
20.2.6 Ordering of type EXLENSIONSecvereieuiereieieiteeterteeieeteeteetteeeeseeeeeneeseeeneeseeeneesneenees 328
20.2.7 Template type EXLENSIONSeevvrrueerereiereeeierteeeesteeteeteeteeeteeeeneeeeeneesseeneeseeeneesseenees 328
20.3 Combining inheritance and EXLENSIONc.eeruerierierierierieieeeerteeieeeeeee e eeesee e seeeeeseeenees 329
20.4 ACCESS PIOLECLION ..euiiueieiiieeietietieste et et eee st e e s st e e seeete et e e seeseenseeseenseeseenseeneanseeneenseeneenaeenees 331
20.5 OVEITIAING LYPES -veuveeuterieiietieteetiesteete st ete st eeesseeeesseetesseenseeseenseeseenseeseeseeneaseeneenseeneenseennes 332
20.5.1 DSL SYNEAX ..eiruteeiiiiiiieieente ettt ettt ettt ettt e b e st e be e st be e b enee e 333
20.5.2 G SYNEAX .eeiruiieiieiiiieiteeite ettt et et ete e st e bt e bttt e bt st e bt st e b e e et e baesaeebeeea 333
B (TG T 25 111 o) (<RSP 333
Source organization and PrOCESSINE.ccveueereriertirierteeierteeteeteesteeseeseeeseesseeeesseeeesseesesseensesneens 336
) O B o T0) S <L PSR 336
21.1.1 Package declarationsccocceeeeerieienieiese ettt ettt 337
21.1.2 NeSted PACKAZES ...veeveeeieiieiieit ettt ettt es et et 338
21.1.3 Referencing package MEMDETSccccceevieruierieriieiieeieiee e 339
21.1.4 Package aliaSEeSccceeuieriieeieiieiieie ettt ettt a et sne s 340
21.2 Declaration and reference Orderingccoovvererierierieresieieeiesie et ee e enees 341
0 0 B 25 111 o) (<RSP 341
21.3 NAME TESOIULION ...vetiiirtietiierietcteeet ettt sttt ettt et ettt eae bbb e 343
21.3.1 Name resolution eXampPlesccocveeierieriiriee e 344
TSt TEALIZATION.....c..eveeitieteitciteet ettt ettt ettt st sttt ettt ettt be bt bt ebe b b e 348
22,1 €XEC DIOCKS ..ttt ettt ettt ettt ettt 348
22. 1.1 DSL SYIEAX weeiiutiiiiiiiiieieenite ettt ettt ettt ettt sttt st e bt st e sba e st e bt e saaeeneeea 349
2212 G SYNEAX .eeiiiiieitieiiiieiteeite ettt ettt s bt e bt e bt st e bt st e bt e st e bt e et e bt e saaeebeena 349
22.1.3 eXeC BlOCK KINAS ..cveoiiiiiiiiiiieicicicetee et 351
200 W S 25 111 o) (<RSP 352
22.1.5 exec block evaluation with inheritance and eXtensionc..cecceeevecvevvereeenerennns 356

Copyright © 2021 Accellera. All rights reserved.
13

23.

Portable Test and Stimulus Standard 2.0 — April 2021

22.2 FUNCLIOMS ..ttt sttt ettt ettt et ettt b e eb et sb ettt st ettt et et et ebeeaeebesbeebenbenae 360
22.2.1 Function declarationsccocceerierierieieirieenienenee sttt sttt eieene e seens 360
22.2.2 Parameters and retUrn fYPEScceeveeeereeriereeiesieeteeteeiesteeteeseeeeeneeseeeneeseeeeeseeenees 362
22.2.3 Default parameter VAIUESccoocieoierieiiiiieie sttt 363
22.2.4 Generic and Varargs ParammetersScceeeuereereerreerueseentesseeeeeseesseeeesseeneesseeneesseenees 364
22.2.5 PUIE fUNCHONS ..eoviriiriiriiniirtiietei ettt ettt ettt ettt ettt ettt et ebe b sae e 365
22.2.6 Calling fUNCHIONS ...eovieeieiieiieiieieste ettt sttt ettt et e st et eene e eeeneeseeeneeseeenees 366

22.3 Native PSS fUNCIONScoviiiiiiiiictceie ettt e 368
22301 DSL SYINEAX .eeiiutiiiiiiiiieieeeitt ettt ettt ettt ettt ettt e b e st be e st be e s eaee e 369
22.3.2 A SYNEAX .eeiiuiieiieiiiieiteeite ettt et sit et s bt et e bt st e bt st e bt e st e bt e et e beesabeebeena 369
22.3.3 Parameter passing SCMANLICSccueeeeruerreerueereeneeeeesteetesseeneesseeeeeneesseeneesseeneesseenees 370

22.4 Foreign procedural INEITACEcceeierieiieiee ettt 371
22.4.1 Definition using imported fUNCtioNnScceeverieririeierieeeeeee e 371
22,42 TMPOILEA ClASSES .ouveeuiieiieiieiieii ettt ettt e ettt sae et sae s 377

22.5 Target-template implementation of eXxec DIOCKSccceriiiiiriiiiiieieeeeeeee e, 378
22.5.1 Target JanGUAZEcecveeuieiieiieiieieete ettt ettt nne s 379
22.5.2 €XEC 11 ettt 379
22.5.3 Referencing PSS fields in target-template exec blockscccovveeiiieiinieienenen. 379

22.6 Target-template implementation for fUNCIONS...........ceeveriiriirieiieee e 381
22.6.1 DSL SYNEAX ..eiiutiiiiiiiiieitenite ettt ettt ettt ettt ettt st e b e sttt e bt e s enee e 381
22.6.2 G SYNEAX .eeiiuiieiieiiiieieeeite ettt et e st et e bt e bt e bt st e bt st e bt e et e bt e e ate e beesabeebeeea 382
22.6.3 EXAMPLES .ooeeeiieieiieieeee ettt ettt et et nae s 382

22.77 Procedural CONSLITUCTSc.couirirtirierieieieeeteteiteteie ettt sttt sttt ettt ere et eae bbb e 383
22.7.1 ScoPed DIOCKSoeieiiiiieiieiiee ettt 383
22.7.2 Variable declarationsc..coccoerierierieieiririeinene sttt 385
22.7.3 ASSIZNMENLS ...eoueiiiieiietieiietieteeteenteeetesteeeesteeteseeente s st enseeseenseeseeseeneeseeneenseeneenseenees 386
22.7.4 Void function Callsccoerererieriiiiieieiiieteenene sttt 387
22.7.5 Teturn STAtEIMENTocuiiiiiiiiiiiiieiett ettt 387
22.7.6 repeat (COUNt) SLALCIMENLc.eeruieieriieieeieeie ettt ettt et e et et e e e e seeeneeseeeneas 389
22.7.7 repeat-while StAteMENtccoocierieiiiieieee et 391
22.7.8 foreach StAteIMENtcccooivierierieiiiieieieiete ettt 393
22.7.9 1f-€lS€ SLALEIMENTeovirtiriirtiteieietctet ettt sttt ettt ettt eae e 395
22.7.10 match StAtEIMENTcoceruiriiriiieieieieeetet ettt sttt ettt 397
22.7.11 break/continue StAtEMENLc..ccuevveieieieirieieienente ettt sttt eeeeteeeneeve e e e 400
22.7.12 €XEC DIOCK ..cviiiiiiiiiiiesertet ettt ettt 402

22.8 C++ in-line implementation for solve eXec blOCKSccoeveiiirieiieieieeeeeeee e, 403

22.9 C++ generative implementation for target exec blockscccevivierieiiniieiireceee, 404
22.9.1 Generative proCcedural €XECScccverierirrierierieitieieetteteetteteeeeesee et et enee e eeseeenees 405
22.9.2 Generative target-template EXECScevvereiriereeriieiereeieeieieeee et 406

22.10 Comparison between mapping MeChaNISMSccevueererierierierieeieneeieree et sae e seeenees 408

22,11 EXPOILEA QCTIOMS -...veeueeneieiieetietieeieteeite st eee st et e steetesteeaesseeseesseenseeseenseeseenseeneeseeneenseeneenaeeneas 409
22111 DSL SYNEAX .eeerutieieeriiiiiieniie ettt ettt ettt ettt st e it e st e sbte s bt e sbaesateebeesaneenee e 409
22.11.2 G SYNEAX .eeiiuiieiieiiiieitenite ettt et sit et e st et e bt st e e bt e s bt esbte st e e bt e eabe e beesabeebeeea 410
20 B U T 2 1111 o) LTRSS 410
22.11.4 Export action foreign language bindingcceeevieiinieiinienieeseeere e 412

Conditional COAE PrOCESSING ... cueeueeiieuiertieierti ettt ete st e te st e e st e e e st et enee et eneesteeneesseeneesaeeneas 413

23,1 OVETVIBW ..ttt sttt sttt et ettt et ettt eb e bbbt bbb st ettt et ss et emtebeeaeebeebeebenbenae 413
23.1.1 Statically-evaluated StatemMEntscceeceriereerierierieieeiee e 413
23.1.2 Elaboration ProCeaUIEcceecierieierieieeieeie sttt ettt e e e e eeeseeenees 413
23.1.3 Compile-time EXPIESSIONScc.eeueerereuiereieeereeeeeseeeteeteetesseenteeseeseeneesseeneesseeneesseenees 413

e} 1113 U (S35 PO STSRSR 414
23201 SCOPE ettt ettt et ettt e bte et e b e e ate e be e et ebee e 414

Copyright © 2021 Accellera. All rights reserved.
14

Portable Test and Stimulus Standard 2.0 — April 2021

23.2.2 DSL SYINEAX ..eerutiiiiiiiiieitenitt ettt ettt sttt ettt sit e st e bt st be e st e bt e s enaee e

W2 BP0 T 25 111 o) U<t TR

23.3 COMPILE NAS ...t ettt et ae et sae s
23301 DSL SYNEAX .eeiiutiiiieiiiieiteeite ettt ettt ettt ettt ettt st ettt et e bt e saae b e
2K I T2 25 111 o) LTRSS

B e} 10103 (SR Tl PSSR
2341 DSL SYNEAX .eeiiutiiiiiiiiieieenite ettt ettt ettt ettt ettt st ettt et e bt st eaee e

W B3 5 111 o) LTRSS

24, PSS COTE LIDIATY ..ottt sttt sttt e b et e a et e ne et e ene e aeeneenaeeneas
241 EXECULOTS ...ttt ettt et et e e e e e e e e e e eaeennesaeeanes
24.1.1 EXECUtOr rePreSeNtAtiONcceeceerueeieruieiertieeeseeetesteetesseeneeeseeseeneenseeneesseeneesseenees
24.1.2 EXECULOr ASSIZNIMEINLeeiuieuieiieiietreiierteeeesteete st etesseentesseenteeseenseeneesseeneenseeneesneenees

24.2 AQAIESS SPACES .uveuvieuieiieiietieteet et et e st et e st et e s st e e see e tesh e e teeb e e teene e et st e et st e st eneenaeeneenneeneas
24.2.1 Address SPACE CALEZOTIES ...eervrrurerureuierieeiereeeeesteetesteetesseeneesseeseeneenseeneesseeneesseenees
24.2.2 AdAress SPACE TIAILSc.eeeeeeieriieeieieeierie et ettt ettt ete ettt et e et e e esee e saeeneas
24.2.3 AdAIess SPACE TEZIONS ..ecuviruieeieuieieeiiereeeiesteete st etesteentesseentesseeteeneesseeneenseeneesseenees

24.3 Allocation wWithin address SPACESeevuieiiruieiieiieie ettt ettt e e eeseeeneas
24.3.1 BaSe ClaiM tYPE ..evveeiieiieiieiieieeieee ettt ettt
24.3.2 CONtIGUOUS ClAIMS ..uveeieiiieiieiieiierie ettt ettt et e st e s e seeeneesaeenees
24.3.3 Transparent Claimsccceceririerieiereee ettt ettt see e saeenees
24.3.4 Claim trait SEMANLICSevververrertenteieteienteiteieeteeteeteste sttt et st stese st eseesseseeneeneeresaesnens
24.3.5 AllOCAtiON CONSISLEICY ..euvieuieereuientreierteeiesteetesteetesteetesseentesseeseeneesseeneesseeneesneenees
24.3.6 Rules for matching a claim to an address SPacecceeceeveeierireiereeiereeee e,
24.3.7 AllOCAtion EXAMPIEc.eereieuieriieeieriieie ettt ettt ettt e et s et e e st e e e saeenees

24.4 Data layout and aCCeSS OPEIAtIONS.......eeueeuerueeiertieiesteertesteete et eeteesee e eneeseeeneeseeeneesseeneesaeeneas
2441 Data JaAYOUL ..oveiieiiieieetieieee ettt ettt ettt nae s
24,42 SIZEOT S ceieieeiiee ettt ettt a et ene e teene e et entenneeneas
2443 Address space handlesccocorieiiiiiiiiiee e
24.4.4 Obtaining an address space handleocooiiieiiiieiinieee e,
24.4.5 addr value fUNCHIONoociiiiiiiiieie et
24.4.6 ACCESS OPETALIONSveeieuiieieeieeieteeitesteeeesteeeeseeenae e st ensesseenseeseenseeneeseeneenseeneenseenees
24.47 Target data structure SEtUp €XaAMPIEcccceeveeriererieierieieeeeie e

B I T 4 £) TSRS
24.5.1 PSS register definitioncccoeeierieierieeseeie e
24.5.2 PSS register group definitionccooceeeeiieienieeeeee e
24.5.3 Association with address regioncccecovieriiieieiieeeeeeee e
24.5.4 Translation of re@iSter reaAd/WIILEccceevviruieiiiiieieeiee e
24.5.5 Recommended Packagingccooceeoerieierieieiieieeeee et
Annex A (informative) BiblIography.........coccoiriririniiiiieieicieee ettt e
Annex B (normative) FOrmal SYNtaXcc.oeouiiieiiiiieiieiee ettt
B.1 Package deClarationsc.ccveeveriieieniieiesieeieeteete st etesteessesseeseesaeseesseseessesseeseesseessesseennas
B.2 Action deClarations.......c.ceerieuerieiirieinieiinietnietrtet ettt ettt ettt sttt sttt
B.3 Struct deClarationsc.cccoveuerieerieuenieineineirietetetet ettt ettt ettt sttt sttt en e
B4 EXEC DIOCKS ..ottt ettt sttt
B.5 FUICHONS ..ottt ettt sttt ettt ettt sttt st sa et sn et ebe e etenees
B.6 Foreign procedural INTEIfACEc.ccieviriieiiiieiiceeie sttt ettt e aeesaesaeennas
B.7 Procedural StAateMENLS........c..cerveuerieuirieirieinieinietntetet ettt ettt sttt et ettt eerenee
B.8 Component AECIarations............cc.eeieieriierieriierieieeiesteestesteeseseeseeseeseeseesseessesseeseesseessesseenees
B.9 ACHIVILY StALCIMENLSvevieiieiieiieeiestietieeteete et ete e eaesteebessaessesssesseesaesseesaesseessesseessesseessesseeseas
BL10 OVEITIACS ...ttt sttt ettt ettt st sae sttt eb et enenee

Copyright © 2021 Accellera. All rights reserved.
15

Portable Test and Stimulus Standard 2.0 — April 2021

B.11 Data deClarationscueecueeiuieiieeiiiecreesee et et e steeteesaeereeseseesseeseseesseessaeesseesssessseesssessseenses 469
B.12 TEMPIALE EYPES w.nveveeniiiieieetieieeeese ettt ettt ettt ettt e ettt e st e e e s e bt en e e et ene ettt e naeeneenaeeneas 469
BL13 DAt Ty PeS cueeeuiiiiieeiie ettt sttt h e et b e et h e st e bttt enbaeeabeebe 470
B.14 CONSIIAINES.....ccuvieitieeiieitieeieesieeeteeteesveeeteestte e teesaseebeassseasseessseasseessssassaessseesseesssesssessssensseenses 471
B.15 Coverage SPeCIfiCAtIONc.eeuieieiieieeie ettt ettt ettt e e e saeeneesneeneas 472
B.16 Conditional cOmMPIlationcecueiieiirieiieiee ettt ee e 473
BL17 EXPIESSIONS. ..c.uieteitieieetieieetieteetiesteeete et eetesae e e steeneesseeatesseensesseenseeseenseeseenseeneenseeneenseeneesseennes 474
BL18 TACNEITIETS ..veiiiieiieciiieciieeie ettt ettt ettt et e st e et e e s tbeeaseesebeesbeessseessaessseessaesssessseessseenseenses 475
B.19 NUmMDErs and [EETaALS.ccueeiviiiieeitieiiieceeeie ettt e te e e b e ebeesebeeveestaeesbeessaesaseessnessseenses 476
B.20 Additional IeXical CONVENTIONS.........cccvierieriieriieereetieete et e steereesereesteeseaeebeessaeeeseeseneenseesens 477
Annex C (normative) CH+ header fIeS........coiiiiiiiiiiciecie ettt et et ebeesaaeeare s 479
Cl FILE PSSRttt ettt ettt et et b e ra b e e ta e b e eta e beere e beeraenaeeneas 479
C.2 File PSS/ACHIONN...cuiiiiiiiiicieieeiee ettt sttt e et e b e essesseeseesseesaesaeeneas 480
C.3 File PSS/ACHON_ QI ..ocuiiiiiiiiiicicieeiecteeee ettt ettt beere e be e e sneeneas 482
C.4 File pss/action_handle.N.........c.occueviiiiiiiiiiiieccece et 482
C.5 File PSS/AUIIN .ttt ettt et ta b e ere e beeraesaeeneas 482
C.6 File PSS/DINA.N wocviiiiiiiciceeee ettt sttt e e b ere e beeraesaeeneas 488
C.7 Fle PSS/DItI oottt sttt et et e e se e beereesreeraesaeeneas 488
C.8 File PSS/DUITEI.N...c.eiiiiiiieicceeee ettt ere e be e e saeeneas 488
C.9 File pSS/Chandle.n........coooviiiiiieieiieieeeeee ettt raesaeeneas 489
C.10 File pSS/COMP INSEN...iciiiiiiiiiiicieiieiest ettt ettt eeeebeeneesseesaasseennas 489
C.11 File pSS/COMPONCIIL.N.....ccciiiiiiiieiiiieieeteieete ettt ettt b e et beesa e seeseesseessesseennas 489
C.12 File PSS/CONANucniiiiiiiiiciiceeee ettt sttt e et b e e re e b e eseesaeesaesseeneas 490
C.13 File pSS/CONSIIAINT.N.....c.eoiieiiiiiciieiieiecic ettt e se et eeeaebeeseesseesaesaeennas 490
C.14 File PSS/COVEIGIOUDP.I .o.viiiiiiiiiiieiieiieiest ettt ettt ettt e s e beereesbeesaesaeennas 491
C.15 File pss/covergroup DINS.N........cccooieiiriiiiiiieieceeie ettt saeesaesaeennas 491
C.16 File pss/covergroup COVEIrPOINt.Icc.oviiiiiiieiiiieie ettt 495
C.17 File pSs/COVErGroup CTOSS.M..c.uiiiiiiieiiciieiicieeie ettt et eseesbeesaesaeennas 496
C.18 File pss/covergroup iffh ..o 497
C.19 File pss/COVErgroup INST.Iccuiiiiiiieiiiiieieceeie ettt b e e sbeesaesreeneas 497
C.20 File pss/covergroup OPHONS.Hccicciiiiieiiiiciecieeie ettt e sae e 497
C.21 File pSS/CL fIOW.N.cviiiiiiiiciieiicieeeee ettt aeesaesaeenaas 498
C.22 File pss/default diSable.n.........cccueviiiiiiieiiice e 500
C.23 File pss/default value.N.......c.coieiiiiiiiiiceece et 501
C.24 File pss/CnUMEIatioN. 1cceeviiiiiiieieciicieee ettt ettt se e beeseesbeesaesaeennas 501
C.25 File PSS/EXEC.N wcuviiieiiiiieieeeeeee ettt ettt sttt b e et e b e st e beeraesaeeraesreeneas 502
C.26 File pss/EXPOrt ACION.Ncciiviieeiiiieieciieieee ettt e beere e beesaesaeeneas 503
C.27 File PSS/EXLENA.N..c.eiiiiiiieiicieieeee ettt ettt ettt beere e beeraesaeeneas 504
C.28 File PSS/TOTAIlN....ceiiiiiiieiicicieeee ettt sttt et e et e e ereesbeeraesneeneas 505
C.29 File PSS/TOTCaCH.I ..ottt be e saeeneas 505
C.30 File pSS/fUNCION. .coviiiiiiiciciiceeee ettt be e e sneennas 508
C.31 File pSs/if then. N ...coiieiiiiiiciee ettt be e saeeneas 512
C.32 File pss/IMPOrt ClaSS. N ...cuiiiiiieiiiicieciceteeeee ettt ese e neesaesaeennas 513
C.33 File PSS/INLI oottt st ettt e et b e ere e aeeraesaeeneas 514
C.34 File PSS/INPULI coviiieiiiieiecceeee ettt et b e et b e e se e b e essesbeesaesseenaesaeeneas 514
C.35 File PSS/IETAtOr.N....eiuiiiiiiiciiciieee ettt ettt e ere e beeseesbeesaesaeeneas 515
C.36 File PSS/IOCK.N...oviiiiiiiieiiciceeee ettt ettt sttt b e et eesaesbeeseesaeesaasseeneas 515
C.37 File PSS/OULPULIN ..c.eeiviiiieiiciceeee ettt ettt ettt beeseesbeeseesseesaesaeeneas 515
C.38 File PSS/OVEITIAC.N .ooviiiiiiiiciieiieeee ettt sbe e e saeeneas 516
C.39 File PSS/POOLI ettt sttt sttt ettt b e era e beertebeeraesaeeneas 516
C.40 File pSs/Tand_ attr.l.....cceciieiiiicieiieieie ettt ettt ese e beenaesneeneas 517
C.A1 File PSS/TANEZE.N....c.eiiiiiieiicieeeee ettt et e et et e esaesseeseesaeesaesaeeneas 520
C.42 File PSS/TESOUICE. N ..uviiiiiiiiieiieiieieeteett ettt ettt sttt et eesa e b e esaesseeseesseesaesseeneas 521

Copyright © 2021 Accellera. All rights reserved.
16

Portable Test and Stimulus Standard 2.0 — April 2021

C.43 File PSS/SCOPE.I .ottt ettt ettt et ae et sae s 522
C.44 File PSS/SArC.N ..ottt 522
C.45 File PSS/StAtE.N ..ceeeeiiie ettt 522
C.46 File PSS/SIIEaMLNooiiiiiiieieee ettt ettt eneas 523
C.A7 File PSS/SLIUCLUIE.H ..ottt ettt et ae e e saeeneas 523
C.48 File PSS/SYMDBOLN.....c.eiiiiiiiiieiee ettt ettt ettt et ae e sae s 524
C.49 File pSS/tYPE dECLN ..o 524
C.50 File PSS/UNIQUE.I. .. .coiiiieieeieeeee ettt ettt et ae e saeeneas 524
C.51 File PSS/VEC Nttt ettt e s et e s ettt ettt e et et e naeeneas 525
C.52 File PSS/WIAHLN .ottt 525
C.53 File pss/detail/algebEXPr.h.......cccooiiiiiiieiee s 525
C.54 File pss/detail/comp Tef.hc.ooiiiiiiiiee s 527
C.55 File pss/detail/FunctionParam.h...........ccoooirieiiiiiiiiieeee e 527
C.56 File pss/detail/FunctionResUlt.N.......ccooouiiiiiiiiie e 527
C.57 File pss/detail/Stmt.N.......c.ooiiiiieieeeee e 528
Annex D (normative) Core library package..........ooveriieierieienieeeeee et 529
D.1 Package eXCCULOT PKE....cciiiiiiieieiiieiieciieie ettt sttt ettt eesee b e esaebeeseesseesaesaeeneas 529
D.2 Package addr €2 PKE ...ccvieiiiiieieiieieceeeeeee ettt et be et saeeneas 529
Annex E (normative) Foreign language bindings...........cccevcvervirieniieiiniieieseeieeteeee et seesae e ssesne e eenens 533
E.1 Function prototype MAaPPINGc.ccceeceerueereerueeneeeieereeseeentesseesesseessesseesseeseenseeneesseeneesseesesseenees 533
E.2 Data tyPe MAPPING ..oveeveeieenieiieiienieeieeieetesteeee st eeesstetesseessesseenseeseeseeseeseeneeseeneesseeneesseenees 533
E.3 Clanguage DINAINGScceeieriieieiieieeit ettt ettt ese e et e st e teeneesaeeneesaeenees 533
E.3.1 FUNCHON NAMES ..ottt ettt ettt ettt et sttt ettt ebe b saesnea 533

E.3.2 PriMitiVe FPES couveeueeeeeeieieetiesieeeesteete st ete st e te st ete st estesseeneeeseeseeneesseeneenseeneenneeneas 534

Bl 3 3 AT Y S ittt ettt st ettt e b e et e bt e bt e b e 534

B34 SHIUCES oottt s 534

E.3.5 ENUMEIAtion tYPES .eecveeuieiieeieiieienieeieret ettt ettt ete st e e see e sseeteeneeseeeneeseeeneesneenees 536

E.4 CH+1anguage DINAINgS.......cooooieieriieieeeeeee ettt ettt e sae s 537
E.4.1 Function name mapping and NAMESPACESccueeruerreeruerierreereeneeeeeseeeeeseeeeesseenees 537

E.4.2 PriMmitiVe FPES couveeueeieeeieiieeieeieeiiesteete et et st ete st ete st etesseeneeeseeteeneesteeneesseeneesneeneas 537

Eid.3 AT Y S ittt ettt st ettt e b e et e b e e s ae e b e e 538

Eidid SHUCES oot s 538

E.45 ENUMEIAtion tYPES .eecveeuieiiieeieiieienieeieettete st ete st ete st etesseen e sse e eeeneeseeeneeseeeneesneenees 540

E.5 SystemVerilog language bindings............ccoecveririeiiiiieieiiee et 540
E.5.1 FUNCHON NAMES ...ttt ettt ettt ettt et sttt ettt ebe b saesae 540

E.5.2 PriMitiVe TFPES couveeteeeeetieieeiiesteeieesteete st e te st etesteete st e e sseenteeseeseeneesseeneesseeneesneeneas 540

E.53 Numeric value Mapping.......ccccoeevereeierieierieeie st eee st ettt e e e seeeneeseeenees 541

BS54 AT Y S ittt st ettt st e b e st e b e 541

E.5.5 SHUCES oottt e 541

E.5.6 ENUMEIation tYPES .eecveeveeiiieeieiieienieeieste sttt ettt estesteeneesseeteeneesaeeneesseeneesneenees 542
Annex F (informative) SOIULION SPACE.......coeruiriiririrtirieieietetetetette ettt ettt 543

Copyright © 2021 Accellera. All rights reserved.
17

Portable Test and Stimulus Standard 2.0 — April 2021

List of figures

Figure 1—Partial specification of Verification INLENTc.eevueeririiiienieeiieiie et eree e see e eseeseeeenes 48
Figure 2—Buffer flow 0DJECt SEMANTICS........cviriiieiiiiieiiciieteetieteee ettt et eesre s e seeesbe e ebeesseseessenseenes 49
Figure 3—Stream flow ODJECt SEMANTICSceevuiieiiiiieiiitieteeteeteete ettt steeee e esseseeesse e s esbeesseseessenseenns 50
Figure 4—State flow ODJECt SEMANTICSccviiviiiiiieiiiiicieitiete ettt ettt et eesre b e seeesbeeeeesbeessesseessenseenns 51
Figure 5—Single activity, Multiple SCENATIOS.cc.iiuiiruiirietieiiertieiete et ete et ete e ere e b e ebeeesesseessesseenns 53
Figure 6—Scheduling graph of activity with schedule blocK............ccoovveviiiiiviiiiiiicee e, 148
Figure 7—Runtime behavior of activity with schedule blocK...........cccvveviiiiviiiiiiiiiei e, 149
Figure 8—Runtime behavior of scheduling block with sequential sub-blockscccevveviiveniiierieennnn, 150
Figure 9—join_branch scheduling graph...........c.coooiiiiiiiiii e 153
Figure 10—join_branch runtime BeNaVIOT............coiiiiiirieieieieee ettt eee s 153
Figure 11—Scheduling graph of join_branch with scheduling dependencyccocevereieneneinnceene, 154
Figure 12—Runtime behavior of join_branch with scheduling dependencycccooevereneneiecncenenne. 155
Figure 13—join_none scheduling raph...........ccocooiiiiiiiiiniee s 156
Figure 14—join_first runtime DENAVIOTc.oiiiiiiiiiiiieiertee ettt eee s 157
Figure 15—Scheduling graph of join inside sequence blockccoceriiiriiiiiiiineneeeee e 158
Figure 16—Runtime behavior of join inside sequence blOCK...........ccovievvirieiiieieiiicieie e 158
Figure 17—Scheduling graph join with schedule bIOCK...........ccceriiiiiriiiiiiiit e 159
Figure 18—Order of invocation of init_ down and init_up exec bloCKScceocirirerinineneeeececeee, 353
Figure 19—Address space regions With trait VAIUES.........cceoieieieieiiieiieeesie e 432
Figure 20—Little-endian Struct packing in TEEISTETcccveervierrieerieiieeieeeie e eteeree et esveereeseaeeveenene e 442
Figure 21—Little-endian struct packing in byte-addressable SPace.........cccvvevvieieviieieniicieneceese e, 442
Figure 22—Big-endian struct packing in TEZISTET.......coueiruiriiririeieeiierte ettt 443
Figure 23—Big-endian struct packing in byte-addressable Space...........coceereririirenenieniereeeeeeeeeee 443

Copyright © 2021 Accellera. All rights reserved.
18

Portable Test and Stimulus Standard 2.0 — April 2021

List of tables

Table 1—DOCUMENE CONVENTIONScueeuieuieuieieritetieterteetestesteseeteseeseeseeseesesteeseesesaessesensessensenseneeneeneesesseeseasenes 34
TabIE 2—PSS KEYWOIAS ...cuviiiiiiieiiieiiete ettt ettt ettt b e et esbe e e e sbe e st e saeessesteesbesssesbaessesseesseseenns 41
Table 3—Specifying special characters in string lterals...........cccooerieiriiiiiniicree e 44
Table 4—PSS/DSL features not supported in PSS/Coviviiiieieieeieeeeeeeeeteeeeeeee e 60
Table 5——NUMETIC AALA LYPES ..eveevieiierieieiti et ete sttt ste et e steebeeteebeereesseesaesseessesseessesssessesssessesssessenssenseenes 63
Table 6—Assignment operators and data tYPES.........erveruerierierieieiet ettt 96
Table 7—Expression operators and data tYPES.........cceecverieriieieriieierreeeeste e sreeeesreeseseeseseseseessesseessesseenns 96
Table 8—Operator precedence and aSSOCIALIVITYccverierrieierrieiertieeeetieee st ereseeresreeseeesesseessesseessesseenns 97
Table 9—Binary arithmetic OPEIALOTSc..cceevvieieriiiierieieeste ettt sre ettt eebeereeaeeteeseeeeesaeessessesssessessnens 101
Table 10—POWET OPETALOL TULESovieeiieiieiiieiieie ettt ettt ettt et e et e beeseesteesaesaeessesreessesssessesssessensnans 102
Table 11—Relational OPETALOLScc.ecvierieiierietieteete et este et esteeteteettesbeessesseessesseessesseessesseessesssessesssessesseens 102
Table 12—EqUality OPETAtOTS......cc.covieiietieiieteeteetteie et ete et et e et ebeeseesbeessesseessesseessesseessesseessesssessesssessesseans 103
Table 13—Bitwise binary AND OPEIALOTccveeieriiiierieieeteetete et steete sttt sreeaeereessesreesseessesesssesesseens 104
Table 14—Bitwise binary OR OPEIAtOrccecoviiieriiiierieiieiteeeeteetesteetesreesesreesesreeseseeesseessessesssessessnens 104
Table 15—Bitwise binary XOR OPEIALOTccvecieriiiierieiierieeteteeeeste et sreeaesreesesteessesreesseessessesssessessnens 105
Table 16—Bitwise Unary Negation OPETALOTccvieeeruereerreeresteeresreesesreesesseessesseesesseessesssessesssessesseens 105
Table 17—Results of unary reduction OPEIAtIONScceeeerrieierieerirtieteereeteereere et ereereesaeersesseessesseeseens 105
Table 18—Bit sizes resulting from self-determined eXPreSSIONSceeeveeeerieeeereeeeerreeeesieeresreeeesseenens 110
Table 19—Action handle array traversal contexts and SEMANTICSccveeeervierieriieeerieeeenreeeeseeeesaeeenens 140
Table 20—Instance-specific COVErgroup OPLIONScverueieerrieierreeresreereereeseeseeseereesesseesseessessesssessesseens 303
Table 21—COVErgroup SAMPIINE.......c.cccveiiirtiitirtieteie ettt ettt sttt s tesbesbe st e be st enee st eneeneeseeseeseeseenes 309
Table 22—Derived type element DERAVIOLSccccoviiiiiiiiiiicieeeeeeet ettt a e eenens 312
Table 23—Flows supported for mapping MEChANISIMSceccvevvieiiiieiieiieieeeeee et e e 408
Table 24—exec block kinds supported for mapping mechanisSmsccceeerereneneneneneneseeeeeeeee, 409
Table 25—Data passing supported for mapping MmeChanisSms...........c.ccveeverieviieierieeeeie e 409
Table 26—Scenario eNtity LEtIMESccoccviiiiiiiiiiii ettt re e ereesbe s esbeesnens 437
Table E.1—Mapping PSS primitive types and C tYPeS......ccuerrieverrieiiriieieereeieereeeeereereseesaeseeessessnesseesnens 534
Table E.2—Mapping PSS struct types and C tyPeS.......cvuiiverrieieriieierieeieereeeeereeeesteereseeesaesveessesssessessnens 534
Table E.3—Mapping PSS struct field primitive types and C tyPes.........cceeeeviieieriieienieeeenieceesieevesieeenens 535
Table E.4—Mapping PSS enum types and C tyPeS.......cvuiiierrieierieeieniiereereeteereeeeereesesreesaesseessesssessessnens 536
Table E.5—Mapping PSS primitive types and CH+ tyPescoveeveriieiiiiieiieeeieereeeeeve et eae e 538
Table E.6—Mapping PSS struct types and CH tYPES ..covevueeriieieiiieiirieeieeieeeeere et se e sveesveseaesseesnens 538
Table E.7—Mapping PSS primitive types and SystemVerilog tyPes.......ccevevveereereeieerieieerieiresneeeesreeenens 540

Copyright © 2021 Accellera. All rights reserved.
19

Portable Test and Stimulus Standard 2.0 — April 2021

List of syntax excerpts

Syntax 1—DSL:
Syntax 2—DSL:
Syntax 3—DSL:
Syntax 4—DSL:
Syntax 5—DSL:
Syntax 6—DSL:
Syntax 7—DSL:
Syntax 8—C++:
Syntax 9—C++
Syntax 10—DSL
Syntax 11—DSL

Syntax 12—C++:
Syntax 13—C++:
Syntax 14—C++:
Syntax 15—C++:
Syntax 16—C++:
Syntax 17—DSL.:
Syntax 18—C++:
Syntax 19—DSL.:
Syntax 20—C++:
Syntax 21—C++:
Syntax 22—DSL.:
Syntax 23—C++:
Syntax 24—DSL.:
Syntax 25—C++:
Syntax 26—C++:
Syntax 27—C++:
Syntax 28—DSL.:
Syntax 29—C++:
Syntax 30—C++:
Syntax 31—DSL.:
Syntax 32—DSL.:
Syntax 33—DSL.:
Syntax 34—DSL.:
Syntax 35—DSL.:
Syntax 36—DSL.:
Syntax 37—C++:
Syntax 38—DSL.:
Syntax 39—C++:
Syntax 40—C++:
Syntax 41—DSL.:
Syntax 42—C++:
Syntax 43—DSL.:
Syntax 44—DSL.:
Syntax 45—DSL.:
Syntax 46—DSL.:
Syntax 47—DSL.:
Syntax 48—C++:
Syntax 49—DSL.:
Syntax 50—C++:

Syntax 51—DSL

INEEEET COMSTANES. ..c..eeutiiieiietieit ettt ettt ettt e e sbe e e st enbesieenbeas 42
SHING LIEETALS ...eevvievieiieiieeie ettt ettt ettt et e et este e st e saeesaesteesbesssessesseessesseensens 44
AGEIegate TITETALSeoviiiiiiciccicceec e es 45
Empty aggregate lIEralccooiiiieieeeieeeeet ettt 45
Value TSt TIEETALcuiiuietiiiiee ettt ettt st 46
A T U1 ¢ | RSP STRPUIPSRRPRINY 46
SHUCTUTE TIEETAL.....c.eieiieeeeee ettt a ettt sae st se e 47
SCOPE AECIATALION ...ttt ettt ettt te e b e e re e b e ereesseereesbeeraesseessenseas 58
EYPE AECIATALION ...uvivviieeeiiciieieeteet ettt ettt be s re e b e ab et e essebeessesseessesreesaeenis 59
: Data types and data declarationscceevevuieieriieieniieeecie ettt 62
s Numeric type declarationc.ocveeviiieriieieiieieteeeese ettt beere s e 63
DIt AECIATALION ...ttt ettt ettt be et et besbeste e eans 64
Numeric type width declarationccceecverierieieeciicieieeeete e 64
Numeric type range declaration.............ceccieeiiiiirenese et 65
Scalar non-rand declarationscecciirirerereriere ettt 65
Scalar rand declarations............cooeeieieiiirinese sttt 66
ENUM AECIATALIONeoueiiiiiiitieiieit ettt ettt ettt besb e st aesbeseenee e neens 67
ENUM AECLATALIONeiuiiiieiieiieiiii ettt ettt ettt eb et be et be st eaeseeans 68
SHING AECIATALION ... ecviiviciiiciicieeieet ettt ettt ettt tb b e sa et e ersesreeneesaeenaeeeas 70
Non-rand string declaration...........c.cceeeveviieierieiieieeieee ettt eeae e 70
Rand string declaration............cceeveruieieriieieitieiesieeee ettt beete e ee b ereere e 71
chandle declaration.............ooiiiiiiiiirieee ettt 72
chandle declarationccociiiiiiiii ittt et 72
SEIUCE AECIATALIONeeiiiiietieiieit ettt ettt ettt sbe st e et eene 73
SEIUCE AECLATALIONeieeieiieiieiceit ettt ee bbb seeae e eens 74
Struct non-rand deClarations..............ceceiiririrererese et 75
Struct rand deClarationscccceieeeiiirieere sttt st 75
COllECtioN dAtA LYPES ..eveeeririeeiieiietieteete ettt ettt et e et et esbeess e reessesreesseereensesaeensenes 76
Arrays of non-random attriDULESc.cccverieeiieiiieieerie et sae e 79
Arrays of random attriDULEScceevvieiiiieieieeeectceee ettt 80
TEE AECLATATION. ..ottt ettt ettt 91
User-defined type declarationc.ccueeieriieieniieiesieeie e eee st sve v see s e enre e 93
CASE OPETALION ..vvvieutieeiieeiiesteeeteestteerteestteeteesateesteessteesseesseeanseenseessseenseessseenseessseenseenssennne 93
EXPressions and OPETAtOrS.........c.ccvervirrierreerierieeesteeeesteeeesseesesteessesssessesseessesssesesseessenns 95
CoNAItIONAL OPETALOT........cvieeierieeietietiesie et et et e teebeeteebe e e esseeseesseesaesseessesseessesaeas 106
Set MEMDbETSNIP OPETALOL.......cviiieiieiieiieeieteet ettt ettt etesteebesreesesaeebesssesbeessesreees 106
Set MEMDETSRIP OPETALOTeeitiieiieiieeiierie ettt ettt ettt e e e e staeeaeessaeessaeneee s 107
cOmMPONENt dECIATATIONccveeiiieieiiciicieete ettt ettt eaeeereeaesreesaesaeensesaeas 112
COMPONENE AECIATATION.veeiieiiieiieeiiete ettt st ebe e e e beesbaeebeeseesnseenseennnes 113
COMPONENE INSEANTIALION.eeuvieiieeiieeiierite et ertte et eriee e eteeebeeseaeebeesteesseeseesnseenseennnes 113
ACTION AECIATATIONueiiieiieiieie ettt ettt be e ee 121
ACTION AECIATATION. ...ttt ettt ettt 122
Template type declarationcoeveeiieieriieieiieeeie ettt 125
Template value parameter declarationcceeveeviievierieeierieeieseere e 126
Template type parameter deClarationc.oceeveerrieienieeeeieeeeseere e 127
Template type INStANTIALIONc..ecverreeiietietieteete ettt et eeeesbe s teesseereesbeeseesseeeas 129
ACLIVILY STATEINENEveevvieiieeeiieeieeiee e et et eetee et e et eesibeeaeesebeesaeesbeensaeenseenseesnseenseennsas 133
ACLTVILY STATEINICNE. ... veetieeiiieiieeieeiee et ertte et et e et e eteesbeesteesebeesaaeenseeseeenseenseesnseeseennsas 134
Action traversal StAtEMENT..........eoueriiiirieiercee ettt 134
Action traversal StAtEMENTc..eiouiriiiiinieiiecee e 135
S ACHIVILY SEQUENCE DIOCKvviiiiiiiiciicicicee et 141

Copyright © 2021 Accellera. All rights reserved.
20

Syntax 52—C++
Syntax 53—DSL
Syntax 54—C++
Syntax 55—DSL
Syntax 56—C++
Syntax 57—DSL
Syntax 58—DSL
Syntax 59—C++
Syntax 60—DSL

Syntax 61 —C++:
Syntax 62—DSL:
Syntax 63—C++:
Syntax 64—DSL:
Syntax 65—C++:
Syntax 66—DSL:
Syntax 67—C++:
Syntax 68—DSL:
Syntax 69—C++:

Syntax 70—DSL

Syntax 71—C++:
Syntax 72—DSL:
Syntax 73—C++:
Syntax 74—DSL.:
Syntax 75—C++:
Syntax 76—DSL:
Syntax 77—C++:
Syntax 78—DSL:
Syntax 79—C++:
Syntax 80—DSL:
Syntax 81 —C++:
Syntax 82—DSL.:
Syntax 83—C++:
Syntax 84—C++:
Syntax 85—DSL:
Syntax 86—C++:
Syntax 87—DSL:
Syntax 88—C++:
Syntax 89—C++:
Syntax 90—DSL:
Syntax 91—C++:
Syntax 92—DSL.:
Syntax 93—C++:
Syntax 94—DSL.:
Syntax 95—C++:
Syntax 96—DSL:
Syntax 97—DSL:
Syntax 98—DSL:
Syntax 99—C++: Conditional constraint
Syntax 100—DSL: foreach constraint
Syntax 101—C++: foreach constraint
Syntax 102—DSL: forall constraint

Portable Test and Stimulus Standard 2.0 — April 2021

: Activity sequence block
s Parallel StAtCMENToooviiieeiie e
T Parallel STAtCIMENL...........cociiiieiie et
2 Schedule STALEIMENL........cccvviiieeie et e et e e eenneas
2 Schedule STAEIMENTccuveieeeie e e e e e et eeenneas
: Activity join specification
: repeat-count statement
: repeat-count statement
: repeat-while statement
repeat-while statement
foreach statement
foreach statement
S (ST A ¥ 1153 00 1<) 1| RO
S (ST A 71155 00 1<) 1| O RROT
if-else statement
1F-1SE STAtEIMENLviiiieiii ettt e e e e e e e e e eeaneeean
MALCH STALCIMENL.........eieiieiiiieeee ettt e e e e et eeeeaaeeeeneeeens
MALCH STALCIMENILovviiiiiiiceee et e et e et e e e e e eenaeeeeaaeeenn
B (S 0 Lo ST P2 113 10T 1L SRS
replicate statement
symbol declaration
SYMDBOL AECIATAtION.euieiieiieie ettt sne e e e
[0} 0 Ta IS ¥ 1753 10 1<) 11 AR
Lo 0 La IS ¥ 1153 10 1<) 11 SRR
DUTTEr dECLArAtiONeeiieiieceee e
DUTTEr dECLArAtiON.........eeiiieiiieeeie e e
SIream dECIATALIONc..eiiiiiee ittt e e e e eaee e eaeeeeeaneeeenes
Stream deClATAtION.cc.eii it e e e e e e e e e e eeaneeeas
SEALE AECIATALION.oeieevii it e e e e eaee e eeaaeeeeaneeeenns
STALE AECIATALIONvveeieeie ettt e et eeeaee e e e e eeaneeenn
Flow object reference
action input
action output
resource declaration
1E€SOUICE AECIATALIONveiieeii ettt eeaee e e e e eaaeeen
Resource object reference
Claim @ 10CKEA TESOUICEueeeeeeieeeeie et
Claim @ Shared TESOUICE...........eeeueiieeeie ettt eeaeeeeeaaeeean
POOL INSTANTIALION.eeiieieeeeie et e e e e e e e e et e e eenaeeeeneeeens
POOL INSTANTIATION ...t e et e e e e e e e e eaeeeeenneeeenneeens
Static bind directives
Static DINA ITECHIVESeeeieieeeeeie ettt e et eaee e e e eereeeeenns
Member constraint deClaration...............cccoeiieiieeiiieeeiee e
Member constraint declaration
Expression constraint
IMPlication CONSLIAINE.ccueiuieiieiieiieeieie ettt ettt e e nee s eneeeee
Conditional constraint

Syntax 103—CH+: forall CONSIIAINL.ccuiiiiieieieciee ettt ete e neeene

Syntax 104—DSL: unique constraint
Syntax 105—C++: unique constraint

Copyright © 2021 Accellera. All rights reserved.
21

Syntax 106—DSL:
Syntax 107—C++:
Syntax 108—DSL:
Syntax 109—DSL:
Syntax 110—C++:
Syntax 111—DSL:
Syntax 112—C++:
Syntax 113—C++:
Syntax 114—DSL:
Syntax 115—C++:
Syntax 116—C++:
Syntax 117—C++:
Syntax 118—DSL:
Syntax 119—C++:
Syntax 120—C++:
Syntax 121—DSL:
Syntax 122—C++:
Syntax 123—C++:
Syntax 124—C++:
Syntax 125—C++:
Syntax 126—C++:
Syntax 127—C++:
Syntax 128—C++:
Syntax 129—C++:
Syntax 130—C++:
Syntax 131 —C++:
Syntax 132—DSL:
Syntax 133—C++:
Syntax 134—DSL:
Syntax 135—C++:
Syntax 136—DSL:
Syntax 137—DSL:
Syntax 138—DSL:
Syntax 139—C++:
Syntax 140—DSL:
Syntax 141 —C++:
Syntax 142—DSL:
Syntax 143—C++:
Syntax 144—DSL:
Syntax 145—C++:
Syntax 146—DSL:
Syntax 147—C++:
Syntax 148—DSL:
Syntax 149—C++:
Syntax 150—DSL:
Syntax 151—DSL:
Syntax 152—C++:
Syntax 153—DSL:
Syntax 154—DSL:
Syntax 155—DSL:
Syntax 156—C++:
Syntax 157—DSL:
Syntax 158—C++:
Syntax 159—DSL:

Portable Test and Stimulus Standard 2.0 — April 2021

Default CONSIIAINESeoveriereiiieieeeieteceteer ettt ettt 240
Default CONSIIAINESc..eovetirtiieieieeeieeecete sttt st 241
Scheduling constraint StAtEMENL...........c.eerueeieriirieie et 244
COVErgroup declaration..........coecueiuieierieiesieeeeee ettt 283
COVETroup dECIArAtIONeeeeiieieitieie ettt st st ene 283
COVETrZIoUpP INStANTIALIONeuieeieieeiietieieete ettt sttt see e sae et e steeneesseeneeeeens 286
User-defined covergroup instantiationcccceceeeereeienieenieneeeeneeeeseeeeeseeeee e 286
In-line covergroup iNStantiationccevceeeererriereeriestieieeeeete e ee e see e seeeeeeeeas 287
COVErpoint deClarationc.eeviiuirieriieieee et 289
COVETPOINt dECIATATION .. .eouvieieiieieciieee ettt sttt st st enee e ene 290
constructors for unnamed coverpoint declarationceccoeeeereriereneeienieneeeee 291
Specifying an iff condition on a COVErpointceeveeveeiereesienieeeeeeeeee e 291
DINS AECIATATION «.....euviiiiiiiiieiieiecee ettt e 292
coverpoint bins with template parameter of bit Or intcccevvriererierieniereeeeee 293
coverpoint bins with template parameter of vec<bit> or vec<int>...........c.cceccveeuenne 294
CTOSS AECIATATION.....c.vevitiicicicictceete ettt ettt st 300
CTOSS AECIATALIONuviiiiieiieiiitcrtcet ettt ettt ettt nen 301
OPLIONS AECLATATION.c.eieieiieeieii ettt ettt et see e sreeneesnean 305
RS 1L 15 o) & SRS 305
Fodo 1) o] 5 () o ST STRS 305
NAME OPTIOI 1.eeeitetieteetiett et et eete et etesaeesesseesteeatesseeneanseenseeseenseeneenseeneesseeneesseensennean 306
COMIMENT OPLIOTL 1..eeeieteiieieeeee et eee st e e st ete et e enteeseenteenee et eneeeseenaesseensesneesesneeseeneanseens 306
detect OVETlap OPLION ...ocueiiieeieiieieeieee ettt seeas 306
N (ST R o) 075 (o) s BRSO PRSI 307
AULO_DIN_ MAX OPTIOM ..ttt ettt ettt ettt ee st e e seeeteeseeseeneeseens 307
PEI_INSTANCE OPLIOM....e.eiitieiieeieiieeiteie et ettt e et ettt et eae et e et e ste et e seeeneesaeeneesseennennean 307
EYPC EXEEIISION. c..e.eieneeeieieetteteeeteteette e et e et et e steeneeseeeneeseeeneeeseesesneensesseeseeneeseeneanseans 321
17 TS 3113 (21 USRS 321
OVETTide dEClaration........c.covevieieieiiiiieceiecr ettt 333
OVETTIdEe dEClarationccevveriirieieieieieceee sttt 333
Package deClaration............ceeuieieiieie e e 337
IMPOTE SEALCIMCNLeeueitieti ettt ettt e et et e s et e eesaeeaesseebesneeseeneeneeens 340
eXeC block declaration.........c.ccoveeveierieieiiiiinre ettt 349
eXeC bloCk deClarationccceceruiriiririniinieniencce ettt 350
Function declaration..........c..coucouerieieirininincnceesestee ettt 361
Function declarationc..cocoeierieiiinininencieeeneseee et 362
Function definitioncocoverieieieieiniceene ettt 369
Function definitionc.ccoerveieieieieiieeenc ettt 370
Imported function qUALITIETS.c.eeouerieiiirieeeee et 372
Imported function qUALITIETSocueeuieiieiee e 373
Import class declarationc.ooeeierieriirieeeee et 377
Import class declaration...........oc.eeuieieiiriere e 378
Target-template function implementation.............coecvereeeereerieneese e 381
Target-template function implementationccoeeererieriieiesieee e 382
Procedural block Statementccceeeeririreririinenentetctetee et 383
Procedural variable declaration...........cccecceerveririinenenienienieneeceetecee e 385
Initialization of variables with non-constant values.........c..coccceevevieveevnicncncnicncnennes 386
Procedural assignment StatemMENtc.eeueerueeuierierieneeeerie e eee e 386
Void function Call........cccoeriiriiiiiiiiiiiii ettt 387
Procedural return Statement...........ccceeveririireniniineneneeererecee et 388
Procedural return Statementcccecveeeerireririneneneeeeeeret et 388
Procedural repeat-count StatemMeNtcceeuieuierieeiere et 389
Procedural repeat-count StateMENtcocveierieeiierieieeeeie e 390
Procedural repeat-while Statementccecueeieririeneeiere et 391

Copyright © 2021 Accellera. All rights reserved.
22

Syntax 160—C++:
Syntax 161—DSL:
Syntax 162—C++:
Syntax 163—DSL:
Syntax 164—C++:
Syntax 165—DSL:
Syntax 166—C++:
Syntax 167—DSL:
Syntax 168—C++:
Syntax 169—C++:
Syntax 170—C++:
Syntax 171—DSL:
Syntax 172—C++:
Syntax 173—DSL:
Syntax 174—DSL:
Syntax 175—DSL:
Syntax 176—DSL:
Syntax 177—DSL:
Syntax 178—DSL:
Syntax 179—DSL:
Syntax 180—DSL:
Syntax 181—DSL:
Syntax 182—DSL:
Syntax 183—DSL:
Syntax 184—DSL:
Syntax 185—DSL:
Syntax 186—DSL:
Syntax 187—DSL:
Syntax 188—DSL:
Syntax 189—DSL:
Syntax 190—DSL:
Syntax 191—DSL:
Syntax 192—DSL:
Syntax 193—DSL:
Syntax 194—DSL:
Syntax 195—DSL:
Syntax 196—DSL:
Syntax 197—DSL:
Syntax 198—DSL:
Syntax 199—DSL:
Syntax 200—DSL:
Syntax 201—DSL:

Portable Test and Stimulus Standard 2.0 — April 2021

Procedural repeat-while Statementcocoecerieriiieneneeee e
Procedural foreach Statementcceecveiririiririinineniececceeee e
Procedural foreach Statementcccecueverireriiinineneeececeeeeeeeee e
Procedural if-else Statementccccueeriririiririinenestectececreeee e e
Procedural if-else Statementcccccueeririreninineneneeectceee et
Procedural match StatemMeNtc..ccveveiririnieriiinenestetctccecrete e e
Procedural match Statement........cc.eoveieiiiririniiinerereeeccee e
Procedural break/continue Statementccecevviererenienienienieieieeeceeeese e
Procedural break/continue Statement...........ceceveruirereriinienienienieieeeeeeeeee e
generative procedural €Xec defiNItioNnSceeverueeiereeriesieie e
generative target-template exec definitions..........oceveererieriieienieee e
Export action declarationcceceeieiieriiesieeiee ettt
Export action declaration............ccceeeerieieneeiesie et
compile 1f deClaration..........ccueviiiiirierieese et
COMPIle haS EXPIESSION ...e.eeeeiriieiieiieiieie ettt sttt ee e enee e ens
COMPIle ASSEIt STALETNIENLe.veeeiieieiieiieieeteee ettt esae et e e eeeneeeeens
EXECULOr COMPONENL.....eiiiiiiiiiriieriieriteeieerit ettt ettt ettt sit et esaee s b e sareenee s
EXecutor Sroup COMPONENLceetiirieriieinirieieenite ettt et et sttt e sateesbeesareenee s
EXecutor Claim SIIUCK......c..couiieieieieiiiiceeeere ettt e
EXecutor qUETY fUNCLIONc.oviiiiieieiieiecicee ettt
Generic address SPace COMPONENLcecuiruieiereierieeiereeeerteeeeeseeeeesteeeesteeeesseeeeneeens
Contiguous address SPace COMPONENL.......c.evueeueruierieeriertreiereeeneeseenaesseesseseesseeeeneeens
Transparent address SPACce COMPONENLccceruirvirrererierrerienieeeireteeeesene s seennes
Base address re@IiON tYPC......cueeeeiuirieriieieeieeieeie ettt sttt e st ettt eeens
Contiguous address SPace rEZION LYPEeeverreeveruieriieierireiereeeneeseesaeseeestesseesseeeeneeens
Transparent TEZION tYPC......ueruerueerieeieriieiesteeeeseeeee st eeeseeeaeseeesesneessesseesesseenseeneanseens
Base address Space Claim tyPeeeveeueerieriieieeiiee et
Contiguous address Space Claim tyPe.......ccevueerueeierieiereeieseee et
Transparent contiguous address space claim typecooceeveeveererierenieseeeceeieieee
PACKEd S DASE SEITUCE.....eiiieiieii ettt s
SIZEOT S STIUCT. ..ttt ettt ettt et e ae st e te s e e teeneaneeens
Address space handleoooieiiiiiiiie e
make handle from_claim functioncoccoeceeiirieiiieni e
make handle from handle function...........cccoeieiirieiiiieni e
addr_ value fUNCHION.ocuiiiiiiee ettt
Primitive read operations for byte addressable Spaces...........ccevveeveeveriereriieneeieene
Primitive write operations for byte addressable Spacesccoceevevereereriieseeieiens
Read and write Series Of DYLES.....c.oecverieiiiiieieeiee ettt
Read and write packed STIUCES.......oocueruieiiirieieiee e
Primitive operation implementation functions.............ceeeeerereeererienerie e
PSS register definitioncceeveiieieriieiee et
PSS register group definitionccooeeciirieiiirieeeie e

Copyright © 2021 Accellera. All rights reserved.
23

Portable Test and Stimulus Standard 2.0 — April 2021

List of examples

Example 2—DSL: Map literals

Example 10—C++:
Example 11—DSL.:
Example 12—DSL.:
Example 13—C++:
Example 14—DSL.:
Example 15—DSL.:
Example 16—DSL.:
Example 17—DSL.:
Example 18—C++:
Example 19—DSL.:
Example 20—DSL.:
Example 21—DSL.:
Example 22—DSL.:
Example 23—DSL.:
Example 24—DSL.:
Example 25—DSL.:
Example 26—DSL.:
Example 27—DSL.:
Example 28—DSL.:
Example 29—C++:
Example 30—DSL.:
Example 31—DSL.:
Example 32—DSL.:
Example 33—DSL.:
Example 34—DSL.:
Example 35—DSL.:
Example 36—DSL.:
Example 37—DSL.:
Example 38—C++:
Example 39—DSL.:
Example 40—DSL.:
Example 41—DSL.:
Example 42—C++:
Example 43—DSL.:
Example 44—C++:
Example 45—DSL.:
Example 46—DSL.:
Example 47—C++:
Example 48—DSL.:
Example 49—C++:
Example 50—DSL.:

Example 1—DSL: Value LSt HEETALScccoviiiiiiiiiiiiiciecieeieeee ettt ve e sreebe e sbesreesseeseenneens 46
.. 46

Example 3—DSL: Structure HEETalSc.coiiieiiiiiiiiiciecieeieseetee ettt s ae b sbe b sreesseeseenne e 47
Example 4—DSL: Nesting aggregate [IteralS.........cccciiiiiiiiiiiiiiesieeee ettt 47
Example 5—CH+: type deClarationc.cccverierciieiieeiieriieeieeste st esete et saeesreesteesbeesaeeseseesseessseensaessnennns 59
Example 6—C++: Simplifying class declarations............ceceeerirereririenierierieeeeeeeicee et 59
Example 7—DSL: €NUM data £YPE ...eccveeeieeiieiieeiieiieeieeiteeteerite et staeeteesaeeaeebeessbeesseessseesseessseesaenssennes 69
Example 8—C+H+: €nUM data LYPE....cccueieiieiieiieeiieiieeieerite ettt see et saeeae e beessbeesseessbeesseessseesaesssennes 69
Example 9—DSL: String data fYPecoueoueieieieieiiet ettt sttt ettt b ettt e b neenean 71
SEENE AL EYPC.eeeerierieiiiieieeiie et eree ettt ettt e e te et esbeesteeesbeesseeesseesaessseenseesnseenseens 71

Chandle data LY Pe.....ccvieiiciieieciieie sttt ettt et reeaeebe e ae s saeenaereas 73

Struct with rand QUAITTIETS.........cveviiiieiiiecie et eee e 75

Struct with rand QUAITTIETScceeviiiieiiiieie e 76

Modifying cOlleCtion CONEENLSccerieuirtiririiriinierieieie et eens 77

Nested COLIECHON LYPES .vvevieeiiiiieieitieieeteeteete ettt ettt e eeste b e steesse s esbeeseesseeseenseens 77

ATTAY dECIATALIONS ...ovvivieiieeieiecteete ettt ettt a e b e e sseereessesreesaeereesneenas 77

FIX@A-S1ZE QITAYS .eevvieeieeiieiieeieeiie et este ettt e et e tae et e e steessbeessaeesbeessbeenseensseenseanssennns 80

FIX@A-S1Z€ AITAYS....uveetieeieeiieiieeee ettt te et ere et e sete e te e s ae e teeeaaeesbeessseesseessseenseensnas 80

Array operators and MEthodScvevviiieriiiiiriiciee e e 81

Declaring a list N @ STIUCE ...c..eveieuieiiietceiece ettt ne 82

List operators and Methodsccoeeuiiieiiiiieiiiieciccecreeeee et 84

Declaring a map iN @ SIIUCEc..eveuieieieiietiete ettt ettt et s se e seeseeneenes 85

Map operators and MEthOdScuevviiieriiiiiriiiieie e 87

Declaring @ SEt N @ SEIUCT.......eveieuieeieiteteeteeie ettt ettt ettt ebe et besbeseeneenes 88

Set operators and MEthOdScceviiviiiiiiiiiecieceeee e 90

Use of reference as local variable and function return value............coccocevoeninenenennene 92

Use of reference field and null value ... 92

EYPEACT .ttt b e tb et eat e re et e ereenaeers 93

EYPEACT ..ot et b ettt et e nbeeaeeraeeaeerneens 93

Overlap of possible eNUM VAIUEScceevieiiiieiiieiiecieeeeee e 94

Casting of variable t0 @ it VECTOTcceeiruiiiiirierieiieiee et 94

Using a structure literal with an equality Operator............ccceeveeeveriecieneeieeeereeeen e 99

Using an aggregate literal With @ Set........c.coveiiiireneieeeeee e 99

Using non-constant expressions in aggregate literalscccoceeviiiiiineniienenenene 99

Contextual typing in structure literal interpretation..............cevveeveereeveereeveeseecrennens 100

Contextual typing in enum_item reSOIUtION.cccuevvieiirienieiieie et 101

Value range CONSLIAINTc..ccveerieriieeerieeteiteete e etesteeseseesseeteesseeseesseessesseessesreesseseeas 107

Value range CONSIIAINT........ccueoieiiieiieiietieteete ettt ettt be bbb sbeseesee e nes 108

Set membership i COIECIONcovieieriieiiii ettt 108

Set membership in variable Tange...........ccvevvevvieieiiieieieeieceeese et 108

COMPONECILeeeutieiieeiiesiieeteerte et esteeteesteesteesseeesbeessaeesseesssessseesseessseesseessseessaenssennns 114

COMPONECIL ...eenvieeieeiieeieeteesteestee sttt esteestteebeessteesseessseesseessseanseesseesnsaesseessseenssenssesnn 114

INAIMESPACE ..eevveenvreeiieeriieeieesteeettesteesteestteesteessaeeteessseeseessseeseeasseensaessseenseesnsesnseensses 114

INAIMESPACE. ...eeuveeeiieiieeteeiee et este st estee ettt estteesbeesteessbeeseessseenseessseeseeansesnseesnseensesssses 115

Component declared in PACKAZEcceeiruiririiiieieee e 115

Component INSTANTIATIONeeruveeriieiieeieenteeeeseeetee e esteeseeeaeeseeesbeesseessseessnessseenes 116

Component INSTANTIATION.eeiveereeirierierieeieeeteeeteesteesteesaeebeesseeebeesseeesseessnesseenes 117

Constraining a comp attribULEeeoueiiiriirieriieiee ettt 118

Constraining a comp attribDULEcevueriiririiiieiereee ettt 118

PUIE COMPONENLSeevieeieeiieiteeie et ettt ettt saeeteesteesaeesbeesnbeeseessseensnesnseenes 119

ALOTIIIC ACEIOM 1..euiiieit ettt ettt et b et st e st sbe et e e bt e besbe e beebeenteene 122

Example 51—DSL.:

Copyright © 2021 Accellera. All rights reserved.
24

Example 52—C++:

Example 53—DSL

Example 54—C++:
Example 55—DSL:
Example 56—DSL:
Example 57—DSL:
Example 58—DSL:
Example 59—DSL:
Example 60—DSL:
Example 61—DSL:
Example 62—DSL:
Example 63—DSL:
Example 64—DSL:
Example 65—DSL:
Example 66—C++:
Example 67—DSL:
: Anonymous action traversal
Example 69—DSL:
Example 70—C++:
Example 71—DSL:
Example 72—DSL:
Example 73—DSL:
Example 74—C++:

Example 68—C++

Example 75—DSL

Example 76—C++:

Example 77—DSL

Example 78—C++:

Example 79—DSL

Example 80—C++:

Example 81 —DSL

Example 82—C++:

Example 83—DSL

Example 84—C++:

Example 85—DSL
Example 86—DSL
Example 87—DSL
Example 88—DSL
Example 89—DSL
Example 90—DSL
Example 91—DSL
Example 92—DSL

Example 93—C++:

Example 94—DSL

Example 95—C++:

Example 96—DSL

Example 97—C++:

Example 98—DSL

Example 99—C++:

Portable Test and Stimulus Standard 2.0 — April 2021

atomic action
: compound action
compound action
abstract action
Template type declarations
Template value parameter declaration
Another template value parameter declaration
Template generic type and category type parameters
Template parameter type restriction
Template parameter used as base type
Template type iNStANtiatioNceeeeiuerieriieiereeiete ettt sttt eneeeeens
Template type qualification
Overriding the default values
Action traversal
Action traversal
ANoNymous action travVerSal..........c.ceevirieririerieeie e

Compound action traversal
Compound action traverSal............cceiieieririiirieeeeee e
Individual action handle array element traversal
Action handle array traversal
Sequential BIOCKcocuiiieieieeeee e
Sequential block
: Variants of specifying sequential execution in activity
Variants of specifying sequential execution in activity........cecceeveveriereneenesceneennenn
: Parallel statement
Parallel statement
: Another parallel statement
Another parallel StatemMeNt...........ccoeciirieiiiiee e
2 Schedule StAtEMENT........cceitiriiieieieieieece ettt
Schedule statement
: Scheduling block with sequential sub-blocks
Scheduling block with sequential sub-blocks
B 1054 U o) 21 1 o1y VUSSP
: join_branch with scheduling dependency
: join_select
S 10354 U 4 1o 1 USSP
: join_first
: Scope of join inside sequence block
: join with schedule block
srepeat STAtEIMENT........uiiiiiiiiii e
repeat statement
: Another repeat statement
Another repeat StAtEIMENL.cevieierieierieeie ettt seeeee e eneeeneas
: repeat-while statement
repeat-While STAtEMENL.cceeiirieierie ettt
: foreach statement
FOreach STAtEIMENL. . ..c..eoverteieieieieieieec ettt

Example 100—DSL: SeleCt SAtEIMENL.........eevuieiiieieieeieeieeieerte et ceie ettt ettt et saeeseeseeeneesaeeneesreensenneas
Example 101—CH+: Select SAtCIMENTc.evuieiieiieie ettt ettt ettt ee st eeesaeeeesneas

Example 102—DSL: Select statement with guard conditions and weights
Example 103—C++: Select statement with guard conditions and weights
Example 104—DSL: Select statement with array of action handles
Example 105—DSL: if-else statement

Copyright © 2021 Accellera. All rights reserved.
25

Example 106—C++:
Example 107—DSL:
Example 108—C++:
Example 109—DSL:
Example 110—C++:
Example 111—DSL:
Example 112—DSL:
Example 113—DSL:
Example 114—DSL:
Example 115—DSL:
Example 116—DSL:
Example 117—DSL:
Example 118—DSL:
Example 119—C++:
Example 120—DSL:
Example 121—C++:
Example 122—DSL:
Example 123—DSL:
Example 124—DSL:
Example 125—C++:
Example 126—DSL:
Example 127—C++:
Example 128—DSL:
Example 129—C++:
Example 130—DSL:
Example 131—C++:
Example 132—DSL:
Example 133—C++:
Example 134—DSL:
Example 135—C++:
Example 136—DSL:
Example 137—C++:
Example 138—DSL:
Example 139—C++:
Example 140—DSL:
Example 141—C++:
Example 142—DSL:
Example 143—DSL:
Example 144—C++:
Example 145—DSL:
Example 146—C++:
Example 147—DSL:
Example 148—DSL:
Example 149—C++:
Example 150—DSL:
Example 151—C++:
Example 152—DSL:
Example 153—C++:
Example 154—DSL:
Example 155—DSL:
Example 156—C++:
Example 157—DSL:
Example 158—C++:
Example 159—DSL:

Portable Test and Stimulus Standard 2.0 — April 2021

If-@1SE STALCIMENL. ...ttt ettt ettt s 171
MALCH SEALETIIENE.eviiiiiiiiiiiiiitieteeer ettt ettt 174
MALCH SEALETIIENIEc.evteiieiiiiiiiieceietcr ettt 174
1050 Lo S 21 13 0TS 1L AU 176
TEPlICALE STALCTIIENL ... ieeieiiieeieie ettt ettt et eeene 177
replicate statement with index variable..........occoooieiiiiiiiiieeeeee e 177
Rewriting previous example without replicate statement.............ccceeveeereeeennne. 177
replicate statement with label arraycoceeeiviiiiiienecee e 178
replicate statement error SItUAtIONSeecvereieriereierieseiee st et ee e 178
Extended action traversal..........coccecevirireniniinieniencicteieeeeeeee e 179
Hand-coded action traversal............coccoeeererinienienienieieieeeeeeeeeceese s 180
Inheritance and traversalcccoceeireririninenineeeceeeee et 180
USING @ SYMDOL....cetieiiiiieeeeeee ettt 182
USING @ SYMDOL ...ttt et nee e 182
Using a parameterized SYmbOL..........ccoviiiiriiiiiieecee e 183
Using a parameterized SYmMDbOLcccovieiiiiiiiiiiiecee e 183
Scoping and named SUD-aCHIVItICSecveruerreeriieieiieeeeiee e 184
Hierarchical references and named Sub-activities.........ccccoeeceeveerenencrcnencncnnenen 186
DINd SEALEINENTc.eevieiieiieiieiiiieieteeerc ettt ettt st 188
DINd SEALETNENL. ...ttt ettt st 189
Hierarchical flow binding for buffer objects.........ccceviererieiinieiieeeeeeee 190
Hierarchical flow binding for buffer objectsccccevieririeiinieeeeeee 190
Hierarchical flow binding for stream 0bjects..........ccovvereriereniereeieeeee e 191
Hierarchical flow binding for stream 0bJectSccceveeririereeieieieeeee e 191
Hierarchical resource bindingccoocveoierieieiieie e 192
Hierarchical resource bindingccooceevevieienieieiee e 193
[0 23 o) o[o1 P TRP 195
L0 1S3 o) o) [1 APPSR 195
T2 10 10 o) [AU 196
18 U1 1 0] o) [<1 o1 F TSRS 196
s Ll o) o) [1 AU 198
] PN S 00 <)ot TSRS 198
DULTRT fLOW ODJECE ... eeeetieie e 201
BULTRT fIOW ODJECEeeeieiee e 201
StrEAM fIOW ODJECL.....eiiiieiieieeiiee ettt ettt 201
SrEAM fLOW ODJECT ..ouvieiiiiieiieiee et sneas 202
Multiple producers/consumers using the same buffer poolcccoccoeeirniennne. 203
DEClaring @ FESOUICTE.eeueeeieiieeieieeienteete sttt eee st e e st et e st e e e st eeeeneeeeeneeneeenes 205
DeClaring @ FESOUICTEeeuieuieiieeieeeieie sttt eie sttt ettt e st et ese e e s eneeeneeneeene 205
RESOUICE ODJECL ...ttt ettt ee e 207
RESOUICE ODJECL ..ottt ee e 207
Locking and sharing arrays of resource objects.........ceeoereerierieneniesieeiee e 208
POO0] dEClaration........c.ceceeuiriiriririinienicrtiteer ettt 210
POO0] dECIarationc..cveieieuiiiiiiiinerc ettt 210
StAtiC DINAING ...veeieiieiiieiiee ettt ettt e e st et sae e saeeeeenean 212
StAtiC DINAING . ..c.veeuiieiieiieiee ettt ettt ettt s ae e sre e eneas 213
L ooTo) o) U T 11T PR TP 214
POOL DINAING ...ttt 215
Multiple state pools of the same State tyPecvevveeeereiererieieeeeeee e 216
Resource 0bject aSSIZNMENLceouieierieiereeie ettt ettt enee e e 217
Resource object aSSIZNMENLovieierieieieieie ettt 218
State 0DJECt DINAING....c..eouieiieeieie e e 219
State 0bJECt DINAINGc..erieiieiei et s 219
Declaring a static CONSLIAINTcecuieierieierieie sttt 222

Copyright © 2021 Accellera. All rights reserved.
26

Example 160—C++:
Example 161—DSL:
Example 162—C++:
Example 163—DSL:
Example 164—C++:
Example 165—DSL:
Example 166—C++:
Example 167—DSL:
Example 168—C++:
Example 169—DSL:
Example 170—C++:
Example 171—DSL:
Example 172—C++:
Example 173—DSL:
Example 174—C++:
Example 175—DSL:
Example 176—C++:
Example 177—DSL:
Example 178—DSL:
Example 179—C++:
Example 180—DSL:
Example 181—DSL:
Example 182—DSL:
Example 183—C++:
Example 184—DSL:
Example 185—C++:
Example 186—DSL:
Example 187—DSL:
Example 188—DSL:
Example 189—DSL:
Example 190—C++:
Example 191—DSL:
Example 192—C++:
Example 193—DSL:
Example 194—C++:
Example 195—DSL:
Example 196—C++:
Example 197—DSL:
Example 198—C++:
Example 199—DSL:
Example 200—C++:
Example 201—DSL:
Example 202—C++:
Example 203—DSL:
Example 204—DSL:
Example 205—DSL:
Example 206—C++:
Example 207—DSL:
Example 208—C++:
Example 209—DSL:
Example 210—C++:
Example 211—DSL:
Example 212—C++:
Example 213—DSL:

Portable Test and Stimulus Standard 2.0 — April 2021

Declaring a static CONSLIAINTevieierieieeeeieie et 223
Declaring a dynamic CONSIIAINL.........ccuerureiereeeiereeiesteeie sttt 223
Declaring a dynamic CONSIIAINT.........ecverueeriireieieeieeie ettt 223
Referencing a dynamic constraint inside a static constraintcccceeeeeveeeennne. 224
Referencing a dynamic constraint inside a static constraint.............ccccceeeeerereeeennnne 224
Inheriting and shadowing CONSLrAINTScceveeriirieririereeie e 225
Inheriting and shadowing CONSLrAINTS..........ccuevuierirriereeiereee e 225
Action traversal in-1ine CONSLIAINT.........cceriruirierrerienieieieeeeeteeeeeeee e 226
Action traversal in-1ine CONSLIAINTcocererirterierienieieieceteee e 226
Name resolution inside with constraint blockc..ccccceveveiiiiininininnncnce. 227
Name resolution inside with constraint block..........ccccccecrviivniininininininncnenenn 228
IMPlication CONSLIAINTeeouireieiieiieiieieste ettt e 229
IMPlication CONSLIAINT.eciuieeieiieiieteeieee ettt ee e 229
I CONSIIAINE ...ttt ettt 231
I CONSIIAINL ..c..etitietct ettt 231
foreach iterative CONSIIAINL.c.ceceeiriririririertit ettt 233
foreach iterative CONSIIAINEc.cecvriririririire ittt 234
FOTall CONSEIAINTcueneiieieiieiieictee ettt s 236
rewrite of forall constraint in terms of explicit paths..........ccccovieiieieiieienieee 236
FOTall CONSEIAINT.....c.veneiiiiiiicieiietecce ettt e 237
forall constraint in different activity SCOPES.......ecvvreerueriereeierieieeiee e 237
forall constraint item in a dynamic CONStraint...........ccceeeveveeiereesenieeeeee e 238
UNIQUE CONSLIAINT ...ttt eeeie ettt sttt et eete st e e e st enteeneeeeeneeneeenes 239
UNIQUE CONSLIAINTeeitieeiieeieie ettt sttt et e st e e eseenteeseeneeeneeeeens 239
Use of default value CONStraintscceevererierienienieieieeeeeeeceeeese e 241
Use of default value CONSIraintsocevererienierienienienieieieeeeeceese e 242
Contradiction with default value constraintscoccceeeeveveeeecernenienienenenenennens 243
Default value constraints on compound data types.........cccceeeereereeieneeieneeceeene 243
Scheduling CONSIIAINEScc.eeieriiiiere ettt sneas 245
SeqUENCING CONSLIAINES.c.eeeeieireiieeteeerteete st ete st e te et et et e e eneesteeneeseeeeesseesenneas 246
SeqUENCING CONSLIAINESeeuvieuieeeeiierieeee sttt ettt et et et eee et e seeeeeseeeaeseeeneesneas 247
Struct rand and non-rand fields.........cccocevverinininininic e 248
Struct rand and non-rand fieldsc.cocvveririnininin e 248
Action rand-qualified fleldsccocoooiriiiiii e 249
Action rand-qualified fields.........ccocoeririeiinie e 249
Action-qualified fleldscoooiriiiiie e 249
Action-qualified fleldS..........coririiiiiei e 250
Randomizing flow object attributesccoeeeriirieiieiieesee e 251
Randomizing flow object attributesccooceereiieiiiieiecieeeee e 252
Randomizing resource object attributescoeveerierieieiieieeeeee e 253
Randomizing resource object attributescceveerieiierenieeeeeeee e 254
Activity with random fieldscccoeoieriiiinie e 255
Activity with random fields..........cooceeerieiinie e 255
Value selection of multiple traversals...........cocceviererieieiieeeeeeeeee e 256
Illegal accesses to SUb-action attribULEScoeevuirierierierieeie e 257
Struct with random fleldsS......c..cceoiririiriininiic e 257
Struct with random fIeldsc..ccecieieiriininirc e 258
Activity with random fieldsccoeoeriiiinie e 259
Activity with random fields..........cooceeerieiinie e 259
SUD-ACtIVILY trAVETSALoeiiiiieieiieiiee ettt s 260
SUD-ACtIVILY trAVETSAL.....eouieiieiieiieieeie ettt 261
Activity with dynamic CONSIIAINEScceevierirrieiieie et 262
Activity with dynamic CONSIrAINES........cceeriiruierieriieie e 263
PIe_SOIVE/POSE SOLVE ...ttt ettt sttt sttt eneenaeens 265

Copyright © 2021 Accellera. All rights reserved.
27

Example 214—C++:
Example 215—DSL:
Example 216—C++:
Example 217—DSL:
Example 218—C++:
Example 219—DSL:
Example 220—C++:
Example 221—DSL:
Example 222—C++:
Example 223—DSL:
Example 224—C++:
Example 225—DSL:
Example 226—C++:
Example 227—DSL:
Example 228—C++:
Example 229—DSL:
Example 230—C++:
Example 231—DSL:
Example 232—C++:
Example 233—DSL:
Example 234—C++:
Example 235—DSL:
Example 236—C++:
Example 237—DSL:
Example 238—C++:
Example 239—DSL:
Example 240—C++:
Example 241—DSL:
Example 242—C++:
Example 243—DSL:
Example 244—C++:
Example 245—DSL:
Example 246—C++:
Example 247—DSL:
Example 248—C++:
Example 249—DSL:
Example 250—C++:
Example 251—DSL:
Example 252—DSL:
Example 253—C++:
Example 254—DSL:
Example 255—C++:
Example 256—DSL:
Example 257—C++:
Example 258—DSL:
Example 259—DSL:
Example 260—DSL:
Example 261—C++:
Example 262—DSL:
Example 263—C++:
Example 264—DSL:
Example 265—C++:
Example 266—DSL:
Example 267—DSL:

Portable Test and Stimulus Standard 2.0 — April 2021

Pre_SOIVE/POSE SOLVE ...ttt sttt aeens 266
post_solve ordering between action and flow 0bjectscccereererieririeieeieee 267
post_solve ordering between action and flow objects.........cceoceveevirieiiniereeieee 268
exec body block sampling external dataoccoeoeevirienirieiieeeeeee e 269
exec body block sampling external data............coccoeieririiiinieiieeeee e 270
Generating Multiple SCENATIOS. ... eeuveiiieieriieiirieee ettt 271
Generating Multiple SCENATIOSevueiriieiiriieieeieie et 272
Action inferences for partially-specified flOwS.........ccoeverieiinieiieeeeeeee 274
Action inferences for partially-specified flOWSccceverieiinienieeeeeee 275
Object pools affect INfEreNCINGcccveverieiiiriet et 276
Object pools affect INfEreNCINGcceevvirieriiriei e 277
In-line data constraints affect action inferencing...........ccoeceeeveveeeeneesenieneeeeene 278
In-line data constraints affect action inferencingccoceeeeveerenieseeiereeeeene 279
Data constraints affect action inferencing............cceceveevereerenieseeeseeese e 280
Data constraints affect action inferencingceoceveererierieiesieeeeee e 281
SINGIE COVEIAZE POINL....cvieiiiiieiieiieit ettt ettt ettt et e st e saeeeesneeeeenean 284
SINGIE COVEIAZE POINEoueieeeieeieiieiieeie ettt ettt e e e e e seeeneesneas 284
Two coverage points and Cross COVErage itemsovuerueerueeeereeeeeneereeeeeeneeeneeneeenes 285
Two coverage points and Cross COVErage itemscoveeerereereeseeseeieeeeeeeseeneeenes 285
Creating a covergroup instance with a formal parameter listccoecvevveeenne. 287
Creating a covergroup instance with a formal parameter list............ccccoeceerrrennne 287
Creating a covergroup instance with instance Options...........cocceeeveeeerieriereeeeneennes 288
Creating a covergroup instance with instance Optionscocceeevereerierierierceneenne 288
Creating an in-line COVErgroup NStANCEcceevuereereeriereeienieeeeeeeee e eeeneenee e 288
Creating an in-lin€ COVErgroup iNStANCE.........cevereerueerieeiereeieseee et 289
Specifying an iff CONAItION..........oooveiirieiieeceeee e 292
Specifying an iff CONAItIONcceooieiirieiiee e 292
SPECITYING DINS...ceiiiieiiiiieieeiiee ettt ettt ettt see e sreeneeenean 294
SPECITYING DINS ..ttt ettt se e et esae e e sreeneesnean 295
Select constrained values between 0 and 255c.cceoveveieiiiienniennnencneenne 295
Select constrained values between 0 and 255c.ccoeovevievieiiinninincnnneneeeenee 296
Using With in @ COVEIPOINEcc.eeiiriieieiieierte ettt 296
Using With in @ COVEIPOINEecuieiiieieieriieierie et 296
Excluding coverage point VAlUESccceeoeerierierieieesiieie et 297
Excluding coverage point VAlUES.........ccoceerierierieriieiesieeie e 298
Specifying illegal coverage point Valuesccooeeririenieienieeeeeeee e 298
Specifying illegal coverage point Values...........cccevveiirieriniereeeeee e 299
Value rESOIULION ...ttt ettt s st 300
SPECITYING & CIOSS -euvieuiitieiieiieie ettt ettt sttt et et e e s e steeneeseeeneesneeneesnean 301
SPECITYING & CIOSS .eeuvieuiiiieiieiierie et ete sttt ettt et e e st e et et e seeeneesaeenaesneeneesnean 302
SPECIfYING CTOSS DINS ...eouvieiiiiieiieiieie ettt see e s eeeneas 302
SPECITYING CTOSS DINS....eiiieuiieiieiieiiesie ettt ettt ettt see e s e aesreeeesneas 303
SEHNG OPLIOMS ...eeeentieiietieieeieeieeteerte et ete st eete s bt e teebe e beese e teeseenteeneesseeneesreeneennean 308
SEHING OPLIONS ...veeeetieiieetiete ettt ee sttt et e st e et e e et e et e ene e teeseeseeeneesaeeneesreeneennean 308
Per-instance coverage of flow ODJECESoeevuiriiiieeiieecee e 310
Per-instance COVerage in aCtiONSccverueeierieeiereieiesteeie st ete et e e e eneeeeens 311
Declaring derived components and actionsc.cceeeereereeriereereeieneeienee e 313
Declaring derived components and aCtionsS...........cecevueeruereerieeeenesienieeceee e 314
Default pool with iNheritance...........oocveveeeierireiiee e 314
Default pool with INheritancecceceveerierieieiiee e 315
Polymorphic function Callscoccoeoiriiiininiee e 316
Polymorphic function Calls..........ccoooieiiieiinieiee e 317
Derived type is alSO @ DASE tYPC...cocveruiereieierieeieritee sttt 318
Use of comp and this.comp with inheritance............c.coeoceveerinieiinieieee e 319

Copyright © 2021 Accellera. All rights reserved.
28

Portable Test and Stimulus Standard 2.0 — April 2021

Example 268—DSL: TYPE EXEENSIONcveeueieieiieiieieeieeie et esteetteteesee e eseeteesee et enee et eneesseensesseensesseensessens 322
Example 269—CH+: TYPE EXEENSION ...eovreuiieieiieiieieeiteteetteste et tete et ete et e e eneeteenee st eneesseeneesseensesseensesnenn 322
Example 270—DSL: ACtion tyPe EXtENSION.c.eerueeieruerierteertestieteeteeteeseeteeseeeeeseesseeneesseeneesseesesseesessens 324
Example 271—CH+: ACtiON tyPe EXLENSION .. .eeuveruieeiruieieetierteetiesieeieeteesteteeseeeeeneesseeneesseeneesseesesseensessens 325
Example 272—DSL: ENUM tyPe EXEENSIONSc.eeruieiiieieieriieiteeiienieeiieieetteteeeeseeeneesseeneeseeeneesaeesesseesesnens 326
Example 273—CH+: ENUM tyPe EXtENSIONSc.eeruieiiriieieeiieiteetieieeitenteesteteeeeeeeneesseeneeseeeneesneesesneesesnens 327
Example 274—DSL: Template type eXIENSIONeeouiruierieriieiteeiierieeieeieeeteteeeesteeee st eee st eeeseeeeesseesesneas 329
Example 275—DSL: Combining inheritance and eXteNSION.ceccverueeierieriertieiereeeeeseeeee e ee e e eeees 330
Example 276—DSL: Inheritance and extension of CONSLraints...........ccceeveriieierieesieneee e 331
Example 277—DSL: Per-attribute access MOAIfIer.........ccoeveiirieiieieiieiecee e 332
Example 278—DSL: Block access MOGITICTooueeiiiieiiiieieeiieieeieie et s 332
Example 279—DSL: Type inheritance and OVeITidescccceeieririerieierieieie et 334
Example 280—C++: Type inheritance and OVeITidescoccevieriirierieieniieieeeeee e 335
Example 281—DSL: Hierarchical declaration of nested packageccocceeveenieiinieninieeieee e 338
Example 282—DSL: Direct declaration of nested packageccceevereeierieienieeeeeeeeee e 338
Example 283—DSL: Declaration of nested package before outer package..........cccoeevevevieiiiieenviiennnen. 338
Example 284—DSL: Importing the name of a nested package...........cccveeerierierieiienieeeee e 340
Example 285—DSL: Package aliascceeoirieiiiiieiciiee ettt s 341
Example 286—DSL: Reference to a previous SOUICE UNIT..........eerueeeerieeierireieieeieneeeeeseeeeeseeeeeseeeeesneas 342
Example 287—DSL: Reference to a later-declared action fieldccocerieiinieiiniiiiee e 342
Example 288—DSL: Reference to local variable after declaration...........cocceeceeeeereniesinieneieese e 342
Example 289—DSL: Initialization 0f CONSANESc.eeieriirieieiieieeieie e eeees 342
Example 290—DSL: Name resolution to declaration in nested NAMESPACEeceevveeeereeereereereereieeenens 344
Example 291—DSL: Name resolution to declaration in imported package in nested namespace............. 345
Example 292—DSL: Name resolution to declaration in encapsulating package...........ccccceeeveerereennnnen. 345
Example 293—DSL: Name resolution to declaration in imported package in encapsulating package 345
Example 294—DSL: Package import has no effect on name resolution.............ccecevveverieieiieneieeenee. 346
Example 295—DSL: Package import is not a declarationccceeeeeierieienieienieeeeeee e 346
Example 296—DSL: Resolution of enum item references..........cooveeereeierieieneeiere et 347
Example 297—DSL: Data initialization in @ COMPONENLeceeruerieriieieriieieeteeieeie e eeeseeenee e 352
Example 298—C++: Data initialization in @ COMPONENL..........ecceererieriieieriieienteeieeie e see e nee e 352
Example 299—DSL: init_down and init_up eXeC BlOCKS.......ceiiriiirieiieieieieeee e 353
Example 300—DSL: Accessing component data field from an actioncccceeveeeeevinieneneeneseeenee. 354
Example 301—C++: Accessing component data field from an actioncccceeeevvevinieneneeneiieeeen 355
Example 302—DSL: Inheritance and ShadOWIng............ccooeeierienienierieieeeeee et 356
Example 303——DSL: USINE SUPETeeueerieenieeieieeeeeee st etesteestesttetesseetesseenseeseeseeneesseeneesseensesseensesseensessens 357
Example 304—DSL: Type extension contributes an exec blockcoecerieiiirieiinieiiee e 358
Example 305—DSL: exec blocks added via eXteNSIONccerueeruerieriieieiieieie et 359
Example 306—DSL: Function declaration............cceouiiieriirieiesiesieeiesie ettt s 363
Example 307—CH+: Function declarationceouiieerierieiiesieieeiese ettt 363
Example 308—DSL: Default parameter ValUecccveiuirieieiienieieeeieeee e 363
Example 309—DSL: GENEIIC PATAMEGLETccueevirueeeerueeeeeieesteettenteeseeseeesteseeneeeeeneesseeeesseensesseesesseensessens 364
Example 310—DSL: Varargs ParameEtercceeeeruereeruereertestieneeeseesteestenseeseesseeneesseeeesseensesseensesseensessens 365
Example 311—DSL: PUre funCtiONcc.eeoiiiuieiiieiee ettt ettt ee e e e eneas 365
Example 312—CH+: PUre fUNCLIONoouieiieieiecee ettt et e eesne e eneas 366
Example 313—DSL: Calling fUnCLIONScouieiiiieieieiieieeiierte ettt eee e enee e eesneeeesneas 367
Example 314—CH+: Calling fUNCLIONScceeiiiruieiiiiee ettt et eeseeeeeseeas 368
Example 315—DSL: Parameter passing SEMANTICS.cceeeerueruieruerierieeienteeeeneeeeesteeeeseeeneeseeeeesseensesaees 371
Example 316—DSL: Function availabilitycccoooirieiiiieieieeeeeee e 374
Example 317—C+H+: Function availabilitycccoeriiiiiiiieieceeeeeeee e 374
Example 318—DSL: Reactive CONtrol flOWcoeriiiieiiiiieiecieeeeeee et 375
Example 319—C++: Reactive CONtrol flOWccveiiiiiiiiiieeceeeeee e 376
Example 320—DSL: Explicit specification of the implementation language............ccccceeeevervenereenennnen. 377
Example 321—C++: Explicit specification of the implementation languageccecceveevvrverereenennen. 377

Copyright © 2021 Accellera. All rights reserved.
29

Portable Test and Stimulus Standard 2.0 — April 2021

Example 322—DSL: IMPOIT CLASSeeuieiieiieie ettt ettt ettt ettt et e s ee e saeeneesneeneenneas 378
Example 323—CAH+: IMPOIT CLASSeeuieeieiiieie ettt ettt ettt et ettt e see e saeeaesneeneesneen 378
Example 324—DSL: Referencing PSS variables using mustache notationcccceceveereveeneneenenen. 379
Example 325—DSL: Variable reference used to select the functionecceeveienieiinieri e, 380
Example 326—DSL: Allowing programmatic declaration of a target variable declaration 380
Example 327—DSL: Target-template function implementation.............cceceeeeeriesiereereneee e 382
Example 328—C++: Target-template function implementationececeeveereerierierieniere e 383
Example 329—C++: Procedural block Statementcoceeverieiirieiieiereeieeee e 384
Example 330—DSL: Procedural return Statementcovererierierierieieieeieieeee st ee e 388
Example 331—C++: Procedural return Statementc.eeeeruerierieeierieeiesieeie et 388
Example 332—DSL: Procedural repeat-count Statementcoceeeerueeieriierieniieienieeeeseeeeeseeeeeseeeneeeeees 390
Example 333—C++: Procedural repeat-count Statementceceeeereeienieienieeiese e seeeee e seeeee e 390
Example 334—DSL: Procedural while Statementcccoererieiirienieieceieeeee e e 392
Example 335—C++: Procedural while Statementccceeierieiinienieieieieeee e 393
Example 336—DSL: Procedural if-else Statementcooceeierieriirierieieseeeeee e 396
Example 337—C++: Procedural if-else Statementcooceeierieiiirieiieieeee et 397
Example 338—DSL: Procedural match Statementcceverieririenieieceeeee e 399
Example 339—C++: Procedural match Statement............coeeeruerieiiiieiieieceeee e 399
Example 340—DSL: Procedural foreach statement with break/continue............occcovvevinienenieenenieenee. 401
Example 341—C++: Procedural foreach statement with break/continuecccoecveverierrieeneieenenen. 402
Example 342—DSL: exec block using procedural control flow statementsccceceveereereenereeneennen. 402
Example 343—C++: Generative exec block using procedural control flow statements..............ccccceneeenee. 403
EXample 344——CA4: IN-1IN€ ©XEOC ...evreuiereieiieeiieieeieeiesttete st ettt ettt te et ete et e bt ene e teeneesseeneesseensesseesesnean 404
Example 345—C++: generative procedural EXEC........cueruiriererieneeieieeieie et et ettt seeeee e eeeeeas 406
Example 346—C++: Possible code generated for write multi Words()........cccevvveveenierenienereee e 406
Example 347—C++: generative target-template EXEC.......ooovererieririeiieieriieieie ettt ee e neeeeees 407
Example 348—DSL: EXPOIT ACHIOMeevuieiiriieiieiieie ettt ettt ettt ettt esteeneeseeeneesaeeneesseensesnean 411
Example 349—CH+: EXPOIT ACHIOM ...ecuvetieiieieieeeeeie ettt ettt ettt e steeneeseeeneesaeeneesneensesnean 411
Example 350—Export action foreign language implementation............cecueveeeeerierieneereniesie e 412
Example 351—DSL: Conditional compilation evaluation..............c.ceeceeierierienieriereeeeeeee e 414
Example 352—Conditional processing (C Pre-pProCeSSOT)c.ecueeruerreeruereereeeeeneeeeereeeeeseeeeesseensesseessessens 415
Example 353—DSL: Conditional processing (COmMpPile if).........cceverieiirienieieieecee e 416
Example 354—DSL: cOMPILE NASoouiiiiiiii e e 417
Example 355—DSL: Nested CONAItIONSccuieiiiruieiiiieiesierte et ceie ettt eeesee e saeeeesreeeesnees 417
Example 356—DSL: COMPILE @SSEIT......ccuieiereieiiriieie ettt ettt ettt ettt et eseeeneeseeeneeseeeneesseeneenneas 418
Example 357—DSL: Defining an eXECULOT ZIOUP......cceeueruerruerrieierieeeeeseeeeeneeeeeseesseseessesssessessessesssessens 421
Example 358—DSL: Simple eXecutor aSSIZNMENL.cccuevueerierrieierreeieeseeteeneeeeeeeseeeeesseeneeseeeeesseesessens 423
Example 359—DSL: Definition and use 0f €XECULOT trait.......ccceeruereeriieieriieieieeieete et eeees 424
Example 360—DSL: Use of resource objects as eXecutor Claims..........eeverueeierieeieneenieneeie e 426
Example 361—DSL: Function delegation t0 €XECULOTceieruieririerieeienieeieee et eee e eee s eeenees 428
Example 362—DSL: Contiguous address SPace in PSS_TOP ..everveeruerreerueeientieieneeeieneeeeeseeeeeseeeeesseeeeseens 431
Example 363—DSL: Example address trait tyPecooveveriererieneeierieeieeeieie et 432
Example 364—DSL: Address Space With trait...........ccceririeiirieneeiee e 433
Example 365—DSL: Transparent address Claim...........coccovieierieiinieiieieeeee et 436
Example 366—DSL: Address space allocation eXamplecoceeieririenieienieeee e 438
Example 367—DSL: Address space allocation eXamplecoceeeeririeriieienieeseee e 440
Example 367—DSL: Address space allocation eXample (CONL.).....ccveruerierieeieniieierieee e eeees 441
Example 368—DSL: Packed PSS little-endian Structcoccevieiirienieieieeeeee e 442
Example 369—DSL: Packed PSS big-endian StrUCtccceeiuerieiirieieeieieeee e 443
Example 370—DSL: make handle from_claim eXxamplecoocovieiiriinieiinieeeeeeeee e 446
Example 371—DSL: make handle from handle exampleccoceiiriiiieiinieieee e 447
Example 372—DSL: [llustration of 1€ad32()cveoeereiiieieeierecee et 449
Example 373—DSL: Mapping of primitive operations to foreign C functionsccceceeveervenereenennnen. 450
Example 374—DSL: Mapping of primitive operations to UVM SEqUENCES.........cceerveereererereereereereeeeennns 450

Copyright © 2021 Accellera. All rights reserved.
30

Portable Test and Stimulus Standard 2.0 — April 2021

Example 375—DSL: Implementing primitive operations in terms of other operations............c..cccceereenee. 451
Example 376—DSL: Example using complex data StrucCtures..........cueoeeeerieeienieeieneeie e seeee e 451
Example 376—DSL: Example using complex data structures (CONt.)ccoeceevueeriereenieneeneseenieseeeeeees 452
Example 376—DSL: Example using complex data structures (CONt.)cceeeeevveerieneeneeneenieseenieseeneeenen 453
Example 377—DSL: Examples of register declarationscccceevereeienieieneeieeeeee e 455
Example 378—DSL: Example of register group declarationcecceeeerieieniienienieseseee e 457
Example 379—DSL: Top-level group and address region assoCiationcceceeeeereereereereeseeneeseeneennns 458
Example 380—DSL: Recommended packagingcccovieierieninieniieiesieeieeee e s 459
Example E.1—DSL struct mapping into C........ccooeeiiiiierieriieiieeiieie ettt ettt eee s saeeeesneeeesnens 536

Copyright © 2021 Accellera. All rights reserved.
31

Portable Test and Stimulus Standard 2.0 — April 2021

Portable Test and Stimulus Standard
Version 2.0

1. Overview

This clause explains the purpose of this standard, describes its key concepts and considerations, details the
conventions used, and summarizes its contents.

The Portable Test and Stimulus Standard syntax is specified using Backus-Naur Form (BNF). The rest of
this standard is intended to be consistent with the BNF description. If any discrepancies between the two
occur, the BNF formal syntax in Annex B shall take precedence. Similarly, the C++ class declarations in
Annex C shall take precedence over the rest of this standard when C++ is used as the input format.

1.1 Purpose

The Portable Test and Stimulus Standard defines a specification for creating a single representation of
stimulus and test scenarios, usable by a variety of users across different levels of integration under different
configurations, enabling the generation of different implementations of a scenario that run on a variety of
execution platforms, including, but not necessarily limited to, simulation, emulation, FPGA prototyping, and
post-silicon. With this standard, users can specify a set of behaviors once, from which multiple
implementations may be derived.

1.2 Language design considerations

The Portable Test and Stimulus Standard (PSS) describes a declarative domain-specific language (DSL),
intended for modeling scenario spaces of systems, generating test cases, and analyzing test runs. Scenario
elements and formation rules are captured in a way that abstracts from implementation details and is thus
reusable, portable, and adaptable. This specification also defines a public interface to a C++ library that is
semantically equivalent to the DSL, as shown in the following clauses (see also Annex C). The PSS C++
and DSL input formats are designed with the intent that tool implementations may combine source files of
either format in a single overall stimulus representation, allowing declarations in one format to be referenced
in the other. The portable stimulus specification captured either in DSL or C++ is herein referred to as PSS.

PSS borrows its core concepts from object-oriented programming languages, hardware-verification
languages, and behavioral modeling languages. PSS features native constructs for system notions, such as
data/control flow, concurrency and synchronization, resource requirements, and states and transitions. It also
includes native constructs for mapping these to target implementation artifacts.

Copyright © 2021 Accellera. All rights reserved.
32

Portable Test and Stimulus Standard 2.0 — April 2021

Introducing a new language has major benefits insofar as it expresses user intention that would be lost in
other languages. However, user tasks that can be handled well enough in existing languages should be left to
the language of choice, so as to leverage existing skill, tools, flows, and code bases. Thus, PSS focuses on
the essential domain-specific semantic layer and links with other languages to achieve other related
purposes. This eases adoption and facilitates project efficiency and productivity.

Finally, PSS builds on prevailing linguistic intuitions in its constructs. In particular, its lexical and syntactic
conventions come from the C/C++ family, and its constraint and coverage language uses SystemVerilog
(IEEE Std 1800)l as a reference.

1.3 Modeling basics

A PSS model is a representation of some view of a system’s behavior, along with a set of abstract flows. It is
essentially a set of class definitions augmented with rules constraining their legal instantiation. A model
consists of two types of class definitions: elements of behavior, called actions; and passive entities used by
actions, such as resources, states, and data flow items, collectively called objects. The behaviors associated
with an action are specified as activities. Actions and object definitions may be encapsulated in components
to form reusable model pieces. All of these elements may also be encapsulated and extended in a package to
allow for additional reuse and customization.

A particular instantiation of a given PSS model is a called a scenario. Each scenario consists of a set of
action instances and data object instances, as well as scheduling constraints and rules defining the
relationships between them. The scheduling rules define a partial-order dependency relation over the
included actions, which determines the execution semantics. A consistent scenario is one that conforms to
model rules and satisfies all constraints.

Actions constitute the main abstraction mechanism in PSS. An action represents an element in the space of
modeled behavior. Actions may correspond directly to operations of the underlying system under test (SUT)
and test environment, in which case they are called atomic actions. Actions also use activities to encapsulate
flows of simpler actions, constituting some joint activity or scenario intention. As such, actions can be used
as top-level test intent or reusable test specification elements. Actions and objects have data attributes and
data constraints over them.

Actions define the rules for legal combinations in general, not relative to a specific scenario. These are stated
in terms of references to objects, having some role from the action’s perspective. Objects thus serve as data,
and control inputs and outputs of actions, or they are exclusively used as resources. Assembling actions and
objects together, along with the scheduling and arithmetic constraints defined for them, produces a model
that captures the full state-space of possible scenarios. A scenario is a particular solution of the constraints
described by the model to produce an implementation consistent with the described intent.

1.4 Test realization

A key purpose of PSS is to automate the generation of test cases and test suites. Tests for electronic systems
often involve code running on embedded controllers, exercising the underlying hardware and software
layers. Tests may involve code in hardware-verification languages (HVLs) controlling bus functional
models, as well as scripts, command files, data files, and other related artifacts. From the PSS model
perspective, these are called farget files, and target languages, which jointly implement the test case for a
target platform.

nformation on references can be found in Clause 2.

Copyright © 2021 Accellera. All rights reserved.
33

Portable Test and Stimulus Standard 2.0 — April 2021

The execution of a consistent scenario essentially consists of invoking its actions’ implementations, if any,
in their respective scheduling order. An action is invoked immediately after all its dependencies have
completed, and subsequent actions wait for it to complete. Thus, actions that have the same set of
dependencies are logically invoked at the same time. Mapping atomic actions to their respective
implementation for a target platform is captured in several ways, defined in Clause 22.

PSS features a native mechanism for referring to the actual state of the system under test (SUT) and the
environment. Runtime values accessible to the generated test can be sampled and fed back into the model as
part of an action’s execution. These external values are sampled and, in turn, affect subsequent generation,
which can be checked against model constraints and/or collected as coverage. The system/environment state
can also be sampled during pre-run processing utilizing models and during post-run processing, given a run
trace.

Similarly, the generation of a specific test-case from a given scenario may require further refinement or
annotations, such as the external computation of expected results, memory modeling, and/or allocation
policies. For these, external models, software libraries, or dedicated algorithmic code in other languages or

tools may need to be employed. In PSS, the execution of these pre-run computations is defined using the
same scheme as described above, with the results linked in the target language of choice.

1.5 Conventions used
The conventions used throughout the document are included here.
1.5.1 Visual cues (meta-syntax)

The meta-syntax for the description of the syntax rules uses the conventions shown in Table 1.

Table 1—Document conventions

Visual cue Represents

bold The bold font is used to indicate keywords and punctuation, text that shall be typed exactly as
it appears. For example, in the following line, the keyword "state" and special characters " {"
and "} " shall be typed exactly as they appear:

state identifier [template param_decl list] [struct super_spec] { { struct_body item } }

plain text The normal or plain text font indicates syntactic categories. For example, an identifier shall be
specified in the following line (after the "state" keyword):

state identifier [template param_decl list] [struct super_spec] { { struct_body item } }

italics The italics font in running text indicates a definition. For example, the following line shows
the definition of "activities":

The behaviors associated with an action are specified as activities.

The italics font in syntax definitions depicts a meta-identifier, e.g., action_identifier.
See also 4.2.

courier The courier font in running text indicates DSL or C++ code. For example, the following
line indicates DSL code (for a state):

state power state s { int in [0..4] wval; };

Copyright © 2021 Accellera. All rights reserved.
34

Portable Test and Stimulus Standard 2.0 — April 2021

Table 1—Document conventions (Continued)

Visual cue Represents

[]square brackets | Square brackets indicate optional items. For example, the struct_super spec is optional in the
following line:

state identifier [template param_decl list] [struct super spec] { { struct body item } }

{ } curly braces Curly braces ({ }) indicate items that can be repeated zero or more times. For example, the
following line shows that zero or more struct_body_items can be specified in this declaration:

state identifier [template param_decl list] [struct super spec] { { struct body item } }

| separator bar The separator bar (|) character indicates alternative choices. For example, the following line
shows that the "input" or "output" keywords are possible values in a flow object reference:

flow_ref field declaration ::=
(input | output) flow_object_type object ref field {, object ref field } ;

() parentheses Parentheses (()) group together alternative choices. For example, the following line shows
that a flow object reference begins with either an "input" or an "output" keyword:

flow_ref field declaration ::=
(input | output) flow_object type object ref field {, object ref field } ;

1.5.2 Notational conventions

The terms “required”, “shall”, “shall not”, “should”, “should not”, “recommended”, “may”, and “optional”
in this document are to be interpreted as described in the IETF Best Practices Document 14, RFC 2119.

1.5.3 Examples

Any examples shown in this standard are for information only and are only intended to illustrate the use of
PSS.

Many of the examples use “. . .” to indicate code omitted for brevity. Where “. . .” is used in Annex C or
in C++ syntax boxes, it indicates the use of variadic arguments in C++.

1.6 Use of color in this standard

This standard uses a minimal amount of color to enhance readability. The coloring is not essential and does
not affect the accuracy of this standard when viewed in pure black and white. The places where color is used
are the following:
— Cross references that are hyperlinked to other portions of this standard are shown in underlined-blue
text (hyperlinking works when this standard is viewed interactively as a PDF file).
— Syntactic keywords and tokens in the formal language definitions are shown in boldface-red text
when initially defined.

Copyright © 2021 Accellera. All rights reserved.
35

Portable Test and Stimulus Standard 2.0 — April 2021

1.7 Contents of this standard

The organization of the remainder of this standard is as follows:

Clause 2 provides references to other applicable standards that are assumed or required for this stan-
dard.

Clause 3 defines terms and acronyms used throughout the different specifications contained in this
standard.

Clause 4 defines the lexical conventions used in PSS.

Clause 5 defines the PSS modeling concepts.

Clause 6 defines the PSS execution semantic concepts.

Clause 7 details some specific C++ considerations in using PSS.
Clause 8 highlights the PSS data types.

Clause 9 describes the operators and operands that can be used in expressions and how expressions
are evaluated.

Clause 10 - Clause 21 describe the PSS abstract modeling constructs.

Clause 22 describes the realization of PSS atomic actions.
Clause 23 describes the process for conditional code processing.

Clause 24 describes the PSS core library, which consists of portable functionality and utilities that
PSS tools must implement.

Annexes. Following Clause 24 is a series of annexes.

Copyright © 2021 Accellera. All rights reserved.
36

Portable Test and Stimulus Standard 2.0 — April 2021

2. References

The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments or corrigenda) applies.

ANSI X3.4-1986: Coded Character Sets—7-Bit American National Standard Code for Information Inter-
change (7-Bit ASCII)2 (ISO 646 International Reference Version)

IEEE Std 1800™-2017, IEEE Standard for SystemVerilog Unified Hardware Design, Specification and Ver-
ification Language.3’ 4

The IETF Best Practices Document (for notational conventions) is available from the IETF web site:
https://www.ietf.org/rfc/rfc2119.txt.

ISO/IEC 14882:2011, Programming Languages—Cv“Jr.5

ZANSI publications are available from the American National Standards Institute (https://www.ansi.org/).

3The IEEE standards or products referred to in this clause are trademarks of the Institute of Electrical and Electronics Engineers, Inc.
4IEEE publications are available from the Institute of Electrical and Electronics Engineers, Inc., 445 Hoes Lane, Piscataway, NJ 08854,
USA (https://standards.ieee.org/).

SISO/IEC publications are available from the ISO Central Secretariat, Case Postale 56, 1 rue de Varembé, CH-1211, Genéve 20, Swit-
zerland/Suisse (https://www.iso.org/). ISO/IEC publications are also available in the United States from Global Engineering Docu-
ments, 15 Inverness Way East, Englewood, Colorado 80112, USA (https://global.ihs.com/). Electronic copies are available in the
United States from the American National Standards Institute, 25 West 43rd Street, 4th Floor, New York, NY 10036, USA (https:/
www.ansi.org/).

Copyright © 2021 Accellera. All rights reserved.
37

Portable Test and Stimulus Standard 2.0 — April 2021

3. Definitions, acronyms, and abbreviations

For the purposes of this document, the following terms and definitions apply. The Authoritative Dictionary
of IEEE Standards Terms [B1]° should be referenced for terms not defined in this clause.

3.1 Definitions
action: An element of behavior.

activity: An abstract, partial specification of a scenario that is used in a compound action to determine the
high-level intent and leaves all other details open.

atomic action: An action that corresponds directly to operations of the underlying system under test (SUT)
and test environment.

component: A structural entity, defined per type and instantiated under other components.
compound action: An action which is defined in terms of one or more sub-actions.

constraint: An algebraic expression relating attributes of model entities used to limit the resulting scenario
space of the model.

coverage: A metric to measure the percentage of possible scenarios that have actually been processed for a
given model.

exec block: Specifies the mapping of PSS scenario entities to their non-PSS implementation.

field: A variable associated with an instance of a type.

inheritance: The process of deriving one model element from another of a similar type, but adding or mod-
ifying functionality as desired. It allows multiple types to share functionality that only needs to be specified
once, thereby maximizing reuse and portability.

loop: A traversal region of an activity in which a set of sub-actions is repeatedly executed. Values for the
fields of the action are selected for each traversal of the loop, subject to the active constraints and resource
requirements present.

model: A representation of some view of a system’s behavior, along with a set of abstract flows.

object: A passive entity used by an action, such as resources, states, and data flow items.

override: To replace one or all instances of an element of a given type with an element of a compatible type
inherited from the original type.

package: A way to group, encapsulate, and identify sets of related definitions, namely type declarations and
type extensions.

resource: A computational element available in the target environment that may be claimed by an action for
the duration of its execution.

The numbers in brackets correspond to those of the bibliography in Annex A.

Copyright © 2021 Accellera. All rights reserved.
38

Portable Test and Stimulus Standard 2.0 — April 2021

root action: An action designated explicitly as the entry point for the generation of a specific scenario. Any
action in a model can serve as the root action of some scenario.

scenario: A particular instantiation of a given PSS model.

solve platform: The platform on which the test scenario is solved and, where applicable, target test code is
generated. In some generation flows, the solve and target platforms may be the same.

target file: Contains textual content to be used in realizing the test intent.

target language: The language used to realize a specific unit of test intent, e.g., ANSI C, assembly lan-
guage, Perl.

target platform: The execution platform on which test intent is executed.

type extension: The process of adding additional functionality to a model element of a given type, thereby
maximizing reuse and portability. As opposed to inheritance, extension does not create a new type.

3.2 Acronyms and abbreviations
API Application Programming Interface
DSL Domain-Specific Language

PI Procedural Interface

PSS Portable Test and Stimulus Standard
SUT System Under Test

UVM Universal Verification Methodology

Copyright © 2021 Accellera. All rights reserved.
39

Portable Test and Stimulus Standard 2.0 — April 2021

4. Lexical conventions

PSS borrows its lexical conventions from the C language family.

4.1 Comments

The token /* introduces a comment, which terminates with the first occurrence of the token * /. The C++
comment delimiter // is also supported and introduces a comment which terminates at the end of the
current line.

4.2 |dentifiers

An identifier is a sequence of letters, digits, and underscores; it is used to give an object a unique name so
that it can be referenced. In a given namespace, identifiers shall be unique. Identifiers are case-sensitive.

A meta-identifier can appear in syntax definitions using the form: construct name_identifier, e.g.,
action_identifier. See also B.18.

4.3 Escaped identifiers

Escaped identifiers shall start with the backslash character (\) and end with white space (space, tab,
newline). They provide a means of including any of the printable non-whitespace ASCII characters in an
identifier (the decimal values 33 through 126, or 0x21 through 0x7E in hexadecimal).

Neither the leading backslash character nor the terminating white space is considered to be part of the
identifier. Therefore, an escaped identifier \ cpu3 is treated the same as a non-escaped identifier cpu3.

Some examples of legal escaped identifiers are shown here:
\busa+index
\-clock
error-condition
\netl/\net2
\{a,b}
\a* (b+c)

Copyright © 2021 Accellera. All rights reserved.
40

4.4 Keywords

Portable Test and Stimulus Standard 2.0 — April 2021

PSS reserves the keywords listed in Table 2.

Table 2—PSS keywords

abstract action activity array as assert
bind bins bit body bool break
buffer chandle class compile component const
constraint continue covergroup coverpoint Cross declaration
default disable do dynamic else enum
exec export extend false file forall
foreach function has header if iff
ignore_bins illegal_bins import in init init_down
init_up inout input instance int join_branch
join_first join_none join_select list lock map
match null output override package parallel
pool post_solve pre_solve private protected public
pure rand ref repeat replicate resource
return run_end run_start schedule select sequence
set share solve state static stream
string struct super symbol target true
type typedef unique void while with

4.5 Operators

Operators are single-, double-, and triple-character sequences and are used in expressions. Unary operators
appear to the left of their operand. Binary operators appear between their operands. A conditional operator
has two operator characters that separate three operands.

Copyright © 2021 Accellera. All rights reserved.
41

Portable Test and Stimulus Standard 2.0 — April 2021

4.6 Numbers

Constant numbers are specified as integer constants. The formal syntax for numbers is shown in Syntax 1.

number ::=
oct_number

| dec_number

| hex_number

| based _bin_number

| based _oct number

| based dec number

| based_hex_ number
bin_digit ::=[0-1]
oct_digit ::=[0-7]
dec_digit ::=[0-9]
hex_digit ::=[0-9] | [a-f] | [A-F]
oct number ::=0 { oct digit| }
dec_number ::=[1-9] { dec_digit| }
hex number ::= 0[x|X] hex_digit { hex_digit| }
BASED BIN LITERAL ::="'[s|S]b|B bin_digit { bin_digit| _}
BASED OCT LITERAL ::="[s|S]o|O oct_digit { oct digit| }
BASED DEC LITERAL ::="[s|S]d|D dec digit { dec digit|_}
BASED HEX LITERAL ::='[s|S]Th|H hex_digit { hex digit| }
based bin number ::=[dec_number]| BASED BIN LITERAL
based oct number ::=[dec_number]| BASED OCT LITERAL
based dec number ::=[dec number | BASED DEC LITERAL
based_hex number ::=[dec_ number | BASED HEX LITERAL

Syntax 1—DSL: Integer constants

Integer literal constants can be specified in decimal, hexadecimal, octal, or binary format.

Four forms may be used to express an integer literal constant. The first form is a simple unsized decimal
number, which is specified as a sequence of digits starting with 1 though 9 and containing the digits 0
through 9.

The second form is an unsized hexadecimal number, which is specified with a prefix of 0x or 0X followed
by a sequence of digits 0 through 9, a through £, and A through F.

The third form is an unsized octal number, which is specified as a sequence of digits starting with 0 and
containing the digits 0 through 7.

The fourth form specifies a based literal constant, which is composed of up to three tokens:
— An optional size constant
— An apostrophe character (') followed by a base format character

— Digits representing the value of the number.

Copyright © 2021 Accellera. All rights reserved.
42

Portable Test and Stimulus Standard 2.0 — April 2021

The first token, a size constant, specifies the size of the integer literal constant in bits. This token shall be
specified as an unsigned non-zero decimal number.

The second token, a base format, is a case-insensitive letter specifying the base for the number. The base is
optionally preceded by the single character s (or S) to indicate a signed quantity. Legal base specifications
are d, D, h, H, o, O, b, or B. These specify, respectively, decimal, hexadecimal, octal, and binary formats.
The base format character and the optional sign character shall be preceded by an apostrophe. The
apostrophe character and the base format character shall not be separated by white space.

The third token, an unsigned number, shall consist of digits that are legal for the specified base format. The
unsigned number token immediately follows the base format, optionally separated by white space.

Simple decimal and octal numbers without the size and the base format shall be treated as signed integers.
Unsized unbased hexadecimal numbers shall be treated as unsigned. Numbers specified with a base format
shall be treated as signed integers only if the s designator is included. If the s designator is not included, the
number shall be treated as an unsigned integer.

If the size of an unsigned number is smaller than the size specified for the literal constant, the unsigned
number shall be padded to the left with zeros. If the size of an unsigned number is larger than the size
specified for the literal constant, the unsigned number shall be truncated from the left.

The number of bits that compose an unsized number is tool-specific, but shall be at least 32. An unsized
number that requires more than 32 bits shall have at least the minimum width needed to properly represent
the value, including a sign bit if the number is signed. For example, 0x7 0000 0000, an unsigned
hexadecimal number, shall have at least 35 bits. 4294967296 (2*¥*32), a positive signed integer, shall be
represented by at least 34 bits.

The underscore character (_) shall be legal anywhere in a number except as the first character. The
underscore character can be used to break up long integer literals to improve readability.

4.6.1 Using integer literals in expressions

A negative value for an integer with no base specifier shall be interpreted differently from an integer with a
base specifier. An integer with no base specifier shall be interpreted as a signed value in two’s-complement
form. An integer with an unsigned base specifier shall be interpreted as an unsigned value.

The following example shows four ways to write the expression “minus 12 divided by 3.” Note that =12 and
-'d12 both evaluate to the same two’s-complement bit pattern, but, in an expression, the - 'd12 loses its
identity as a signed negative number.

int IntA;

IntA = =12 / 3; // The result is -4.

IntA = -'dl2 / 3; // The result is 1431655761.

IntA = -'sdl2 / 3; // The result is -4.

IntA = -4'sdl2 / 3; // =4'sdl2 is the negative of the 4-bit quantity 1100,

// which is -4. -(-4) = 4. The result is 1.

4.7 String literals
A string literal is a sequence of ASCII characters enclosed by a single pair of double quotes (" ... "),
called a quoted string, or a triple pair of double quotes (""" ... """), called a triple-quoted string. There

is no predefined limit to the length of a string literal. The formal syntax for string literals is shown in .

Copyright © 2021 Accellera. All rights reserved.
43

Portable Test and Stimulus Standard 2.0 — April 2021

string_literal ::=
QUOTED_STRING

| TRIPLE_QUOTED_STRING
QUOTED_STRING ::=" { unescaped_character | escaped_character } "
TRIPLE QUOTED_STRING ::="""{any ASCII character}"""
unescaped_character ::=any_printable ASCII character
escaped_character ::=\("|""|?\|a|b|fln|r|t|v|[0-7][0-7][0-7])
filename_string ::= QUOTED_STRING

Syntax 2—DSL: String literals

PSS also includes a string data type to which a string literal can be assigned or compared. Variables of type
string have arbitrary length; they are dynamically resized to hold any string. String literals are implicitly
converted to the string type when assigned to a string type or used in an expression involving string type

operands.

The empty string literal (") represents an empty, or null, string.

Quoted string literals may only contain printable ASCII characters (the decimal values 32 through 126, or
0x20 through 0x7E in hexadecimal). Certain characters can be used in quoted string literals when preceded
by an escape character (a backslash). Table 3 lists these characters, with the escape sequence that represents
them. A quoted string shall be contained in a single line.

Table 3—Specifying special characters in string literals

Sgsﬁzgze ASVCaIlflllex Character produced by escape sequence
\a 0x07 Alert (Beep, Bell)
\b 0x08 Backspace
\f 0x0C Formfeed
\n 0x0A Newline
\r 0x0D Carriage return
\t 0x09 Horizontal tab
\v 0x0B Vertical tab
\\ 0x5C \ character (backslash)
\" 0x22 " character (double quotation mark)
\' 0x27 ' character (apostrophe, single quotation mark)
\? 0x3F ? character (question mark)
\ddd any A character specified in 3 octal digits (see Syntax 1). Implementations may issue

an error if the character represented is greater than \377.

Copyright © 2021 Accellera. All rights reserved.

44

Portable Test and Stimulus Standard 2.0 — April 2021

An escape sequence is considered a single character in the string literal. An escaped apostrophe or question
mark is treated the same as an unescaped apostrophe or question mark, respectively, i.e., the backslash is
ignored. The other escaped characters in the table have different meanings from their unescaped versions. It
is illegal for an escape character in a quoted string literal to be followed by any character not appearing in
the table above.

In contrast, a triple-quoted string literal may contain any ASCII character, printing or nonprinting. There is
no escape character. All characters are passed as they are, unchanged. For example, triple-quoted strings
may contain both single and double quotation marks (except for three consecutive double quotation marks)
and newline characters.

Both quoted string literals and triple-quoted string literals may be used anywhere a string literal is desired or
required, except for filename_strings (see target file exec_block in Syntax 138), where a quoted string is
required.

In a string literal that appears in target-template code, mustache notation ({ {expression}}) can be used
to reference PSS variables. See 22.5.3 and 22.6 for details.

4.7.1 Examples
The following string literals are equivalent:

" \"Humpty Dumpty sat on a wall.\nHumpty Dumpty had a great fall.\" "

""" "Humpty Dumpty sat on a wall.
Humpty Dumpty had a great fall." """

4.8 Aggregate literals

Aggregate literals are used to specify the content values of collections and structure types. The different
types of aggregate literals are described in the following sections. The use of aggregate literals in
expressions is described in 9.4.2.

aggregate literal ::=
empty aggregate literal
| value list_literal
| map_literal
| struct_literal

Syntax 3—DSL: Aggregate literals

NOTE—Aggregate literals are not supported in PSS/C++.

4.8.1 Empty aggregate literal

empty_aggregate literal ::= { }

Syntax 4—DSL: Empty aggregate literal

Aggregate literals with no values specify an empty collection (see 8.8) when used in the context of a
variable-sized collection type (list, set, map).

Copyright © 2021 Accellera. All rights reserved.
45

Portable Test and Stimulus Standard 2.0 — April 2021

4.8.2 Value list literals

value_list_literal ::= { expression { , expression } }
Syntax 5—DSL: Value list literal

Aggregate literals for use with arrays, lists, and sets (see 8.8) use value list literals. Each element in the list
specifies an individual value. When used in the context of a variable-size data type (list, set), the number of
elements in the value list literal specifies the size as well as the values. However, when used in the context of
sets, each value is counted only once, even if it appears multiple times. When used in the context of arrays
and lists, the value list literal also specifies the order of elements, starting with element 0. The data types of
the values must match the data type specified in the collection declaration.

When a value list literal is used in the context of an array, the value list literal must have the same number
of elements as the array. It is an error if the value list literal has more or fewer elements than the array.

int cl1[4] = {1, 2, 3, 4}; // OK
int c2[4] = {1}; // Error: literal has fewer elements than array
int c3[4] = {1, 2, 3, 4, 5, 6}; // Error: literal has more elements than array

Example 1—DSL: Value list literals

Values in value list literals may be non-constant expressions.

4.8.3 Map literals

map_literal ::= { map literal item {, map literal item } }
map_literal item ::= expression : expression

Syntax 6—DSL: Map literal

Aggregate literals for use with maps (see 8.8.4) use map literals. The first element in each colon-separated
pair is the key. The second element is the value to be associated with the key. The data types of the
expressions must match the data types specified in the map declaration. If the same key appears more than
once, the last value specified is used.

In Example 2, a map literal is used to set the value of a map with integer keys and Boolean values.

struct t {
map<int,bool> m = {l:true, 2:false, 4:true, 8:false};
constraint m[1l]; // True, since the value "true" is associated with key "1"

}

Example 2—DSL: Map literals

Both keys and values in map literals may be non-constant expressions.

Copyright © 2021 Accellera. All rights reserved.
46

Portable Test and Stimulus Standard 2.0 — April 2021

4.8.4 Structure literals

struct_literal ::= { struct_literal item {, struct literal item } }
struct_literal item ::= . identifier = expression

Syntax 7—DSL: Structure literal

A structure literal explicitly specifies the name of the struct attribute that a given expression is associated
with. Struct attributes whose value is not specified are assigned the default value of the attribute’s data type.
The order of the attributes in the literal does not have to match their order in the struct declaration. It shall
be illegal to specify the same attribute more than once in the literal.

In Example 3, the initial value for the attributes of s1 is explicitly specified for all attributes. The initial
value for the attributes of s2 is specified for a subset of attributes. The resulting value of both s1 and s2 is
{.a=1, .b=2, .c=0, .d=0}. Consequently, the constraint s1==s2 holds.

struct s {
int a, b, ¢, d;

}r

struct t {
s s1 = {.a=1, .b=2,.c=0,.d=0};
s s2 = {.b=2,.a=1};
constraint sl == s2;

Example 3—DSL: Structure literals

Values in structure literals may be non-constant expressions.
4.8.5 Nesting aggregate literals

Aggregate literals may be nested to form the value of data structures formed from nesting of aggregate data
types.

In Example 4, an aggregate literal is used to form a list of struct values. Each structure literal specifies a
subset of the struct attributes.

struct s {
int a, b, ¢, d;
}r
struct t {
list<s> my 1 = {
{.a=1, .d=4},
{.b=2, .c=8}
bi

Example 4—DSL: Nesting aggregate literals

Copyright © 2021 Accellera. All rights reserved.
47

Portable Test and Stimulus Standard 2.0 — April 2021

5. Modeling concepts

A PSS model is made up of a number of elements (described briefly in 1.3) that define a set of possible
scenarios to be applied to the Design Under Test (DUT) via the associated test environment. Scenarios are
composed of behaviors—ultimately executed on some combination of components that make up the DUT or
on verification components that define the test environment—and the communication between them. This
clause introduces the elements of a PSS model and defines their relationships.

The primary behavior abstraction mechanism in PSS is an action, which represents a particular behavior or
set of behaviors. Actions combine to form the scenarios that represents the verification intent. Actions that
correspond directly to operations performed by the underlying DUT or test environment are referred to as
atomic actions, which contain an explicit mapping of the behavior to an implementation on the target
platform in one of several supported forms. Compound actions encapsulate flows of other actions using an
activity that defines the critical intent to be verified by specifying the relationships between specific actions.

The remainder of the PSS model describes a set of rules that are used by a PSS processing tool to create the
scenarios that implements the critical verification intent while satisfying the data flow, scheduling, and
resource constraints of the target DUT and associated test environment. In the case where the specification
of intent is incomplete (partial), the PSS processing tool shall infer the execution of additional actions and
other model elements necessary to make the partial specification complete and valid. In this way, a single
partial specification of verification intent may be expanded into a variety of actual scenarios that all
implement the critical intent, but might also include a wide range of other behaviors that may provide
greater coverage of the functionality of the DUT as demonstrated in the example in Figure 1.

Figure 1—Partial specification of verification intent

Copyright © 2021 Accellera. All rights reserved.
48

Portable Test and Stimulus Standard 2.0 — April 2021

In Figure 1, actions a, b, and c are specified to be traversed sequentially in an activity. Depending on the
data flow between them, and on other constraints in the model, this may describe a complete scenario
specification (see Figure 1(i)), or it may describe a partial specification, which may be expanded into
multiple scenarios that infer other actions. All scenarios satisfy the critical intent defined by the activity,
where a will be traversed, followed sometime later by b, followed sometime later by c. Figure 1 shows
several possible scenarios that may be generated from the partial specification, depending on various factors
to be discussed later in this section.

An activity primarily specifies the set of actions to be executed and the scheduling relationships between
them. Actions may be scheduled sequentially, in parallel, or in various combinations based on conditional
evaluation, looping, or randomization constructs. Activities may also include explicit data bindings between
actions. An activity that traverses a compound action is evaluated hierarchically, i.e., when a compound sub-
action is traversed in an activity, the sub-action activity is traversed fully at that point in the parent activity
(see 5.3.2).

5.1 Modeling data flow

Actions may be declared to have inputs and/or outputs of a given data flow object type. The data flow object
types define scheduling semantics for the given action relative to those with which it shares the object. Data
flow objects may be declared directly or may inherit from user-defined data structures or other flow objects
of a compatible type. An action that outputs a flow object is said to produce that object and an action that
inputs a flow object is said to consume the object. Data flow objects are described in Clause 14.

5.1.1 Buffers

The first kind of data flow object is the buffer type. A buffer represents persistent data that can be written
(output) by a producing action and may be read (input) by any number of consuming actions. As such, a
buffer defines a strict scheduling dependency between the producer and the consumer that requires the
producing action to complete its execution—and, thus, complete writing the buffer object—before execution
of the consuming action may begin to read the buffer (see Figure 2). Note that other consuming actions may
also input the same buffer object. While there are no implied scheduling constraints between the consuming
actions, none of them may start until the producing action completes.

observed
behavior

prod_mem_a)%}(cons_mem_a >—

Figure 2—Buffer flow object semantics

Figure 2 illustrates the sequential scheduling semantics between the producer and consumer of a buffer flow
object.

In Figure 1(i), assume that action a produces a buffer of a particular type, and b inputs a buffer object of a
compatible type, In this case, we say that the buffer object is bound from the output of a to the input of b,
since the semantics of the buffer object support the activity. Similarly, in Figure 1(ii), if, instead of action a,

Copyright © 2021 Accellera. All rights reserved.
49

Portable Test and Stimulus Standard 2.0 — April 2021

action d produced a buffer object of a compatible type for action b, action d could be inferred as the
producer of the buffer for action b to consume. The buffer scheduling semantics allow action d to be
inferred at any point in the schedule prior to the start of action b (shown in Figure 1(ii) as either d;, d,, or
ds), while the activity requires only that action a completes before action b starts. In this case, there is no
explicit scheduling constraint between a and d.

5.1.2 Streams

The stream flow object type represents transient data exchanged between actions. The semantics of the
stream flow object require that the producing and consuming actions execute in parallel (i.e., both activities
shall begin execution when the same preceding actions complete; see Figure 3). In a stream object, there
shall be a one-to-one connection between the producer and consumer.

observed
behavior

: \
_+@__ —< prod_mem_a)
! cons_mem_a}

Figure 3—Stream flow object semantics

Figure 3 illustrates the parallel scheduling semantics between the producer and the consumer of a stream
flow object.

In Figure 1(iii), the parallel execution of actions £ and g dictates that any data exchanged between these
actions shall be of the stream type. Again, assuming that action a does not output a compatible buffer for
action b to input, then action £ may be inferred to supply the buffer to action b . If action £ inputs or outputs
a stream object, then the one-to-one requirement of the stream object would require that action g, which has
a compatible stream type, also be inferred to execute in parallel with £. Action e may be inferred if it is
needed to supply a buffer input to either £ or g.

NOTE—Figure 1(iv) shows an alternate inferred scenario that also satisfies the base scenario of sequential execution of
actions a, b, and c, but in this case, the binding between a and b is legal, and action c requires a buffer input that can
only be supplied by £ or g.

5.1.3 States

The state flow object represents the state of some element in the DUT or test environment at a given time.
Multiple actions may read or write the state object, but only one write action may execute at a time. Any
number of read actions may execute in parallel, but read and write actions shall be sequential (see Figure 4).

Copyright © 2021 Accellera. All rights reserved.
50

Portable Test and Stimulus Standard 2.0 — April 2021

observed
behavior

{ wr_st_a H wr_st_a)j

Figure 4—State flow object semantics

State flow objects have a built-in Boolean initial attribute that is automatically set to true initially and
automatically set to false on the first write operation to the state object. This attribute can be used in
constraint expressions to define the starting value for fields of the state object and then allow the values to be
modified on subsequent writes of the state object.

5.1.4 Data flow object pools

Data flow objects are grouped into pools, which can be used to limit the set of actions that can communicate
using objects of a given type. For buffer and stream types, the pool will contain the number of objects of the
given type needed to support the communication between actions sharing the pool. For state objects, the
pool will only contain a single object of the state type at any given time. Thus, all actions sharing a state
object via a pool will see the same value for the state object at a given time. Pools are described in
Clause 16.

5.2 Modeling system resources
5.2.1 Resource objects

In addition to declaring inputs and outputs, actions may require system resources that must be accessible in
order to accomplish the specified behavior. The resource object is a user-defined data object that represents
this functionality. Similar to data flow objects, a resource may be declared directly or may inherit from a
user-defined data structure or another resource object. Resource objects are described in Clause 15.

5.2.2 Resource pools

Resource objects are also grouped into pools to define the set of actions that have access to the resources. A
resource pool is defined to have an explicit number of resource objects in it (the default is 1), corresponding
to the available resources in the DUT and/or test environment. In addition to optionally randomizable data
fields, the resource has a built-in non-negative integer attribute called instance_id, which serves to
identify the resource and is unique for each resource in the given pool. Pools are described in Clause 16.

5.2.2.1 Locking resources

An action that requires exclusive access to a resource may lock the resource, which prevents any other action
that claims the same resource instance from executing until the locking action completes. For a given pool of
resource R, with size S, there may be S actions that lock a resource of type R executing at any given time.
Each action that locks a resource in a given pool at a given time shall have access to a unique instance of the
resource, identified by the integer attribute instance_id. For example, if a DUT contains two DMA
channels, the PSS model would define a pool containing two instances of the DMA channel resource type.

Copyright © 2021 Accellera. All rights reserved.
51

Portable Test and Stimulus Standard 2.0 — April 2021

In this case, no more than two actions that lock the DMA channel resource could be scheduled
concurrently.

5.2.2.2 Sharing resources

An action that requires non-exclusive access to a resource may share the resource. An action may not share
a resource instance that is locked by another action, but may share the resource instance with other actions
that also share the same resource instance. If all resources in a given pool are locked at a given time, then no
sharing actions can execute until at least one locking action completes to free a resource in that pool.

5.3 Basic building blocks
5.3.1 Components and binding

A critical aspect of portability is the ability to encapsulate elements of verification intent into “building
blocks” that can be used to combine and compose PSS models. A component is a structural element of the
PSS model that serves to encapsulate other elements of the model for reuse. A component is typically
associated with a structural element of the DUT or testbench environment, such as hardware engines,
software packages, or testbench agents, and contains the actions that the element is intended to perform, as
well as the data and resource pools associated with those actions. Each component declaration defines a
unique type that can be instantiated inside other components. The component declaration also serves as a
type namespace in which other types may be declared.

A PSS model is composed of one or more component instantiations constituting a static hierarchy beginning
with the top-level or root component, called pss_top by default, which is implicitly instantiated.
Components are identified uniquely by their hierarchical path. In addition to instantiating other components,
a component may declare functions and class instances (see Clause 10).

NOTE—PSS/C++ does not provide a mechanism for making pss_top-rooted static references into the component
tree. Relative references are supported.

When a component instantiates a pool of data flow or resource objects, it also shall bind the pool to a set of
actions and/or subcomponents to define who has access to the objects in the pool. Actions may only
communicate via an object pool with other actions that are bound to the same object pool. Object binding
may be specified hierarchically, so a given pool may be shared across subcomponents, allowing actions in
different components to communicate with each other via the pool.

5.3.2 Evaluation and inference

A PSS model is evaluated starting with the top-level root action, which shall be specified to a tool. The
component hierarchy, starting with pss_top or a user-specified top-level component, provides the context
in which the model rules are defined. If the root action is a compound action, its activity forms the root of a
potentially hierarchical activity tree that includes all activities present in any sub-activities traversed in the
activity. Additional actions may be inferred as necessary to support the data flow and binding requirements
of all actions explicitly traversed in the activity, as well as those previously inferred. Resources add an
additional set of scheduling constraints that may limit which actions actually get inferred, but resources do
not cause additional actions to be inferred.

The semantics of data flow objects allow the tool to infer, for each action in the overall activity, connections
to other actions already instantiated in the activity; or to infer and connect new action instances to conform
to the scheduling constraints defined in the activity and/or by the data and resource requirements of the
actions, including pool bindings. The model thus consists of a set of actions, with defined scheduling
dependencies, along with a set of data flow objects that may be explicitly bound or inferred to connect
between actions and a set of resources that may be claimed by the actions as each executes. Actions and flow

Copyright © 2021 Accellera. All rights reserved.
52

Portable Test and Stimulus Standard 2.0 — April 2021

objects and their bindings may only be inferred as required to make the (partial) activity specification legal.
A PSS implementation shall not infer an action or object binding that is not required, either directly or
indirectly, to make the activity specification legal. Clause 18 describes action inferencing in more detail.

Figure 5 demonstrates how actions can be inferred to generate multiple scenarios from a single activity.

(ii) (i)

Figure 5—Single activity, multiple scenarios

Looking at Figure 5, actions a, b, and c are scheduled sequentially in an activity. The data flow and
resource requirements specified in the model (which are not shown in Figure 5) allow for multiple scenarios
to be generated. If action a has a buffer or state input, then an action, £ in this case, is inferred to execute
sequentially before a in order to provide the buffer or state object. If a does not have a buffer or state input,
f may still be inferred in order to supply an input to b or ¢, and may ultimately be scheduled before a as
shown, although the only real scheduling constraint is that £ complete before the start of the action that
requires the input flow object.

Once inferred, if £ also has a buffer or state input, then another action shall be inferred to supply that object
and so on until an action is inferred that does not have an input (or the tool’s inferencing limit is reached, at
which point an error shall be generated). For the purposes of this example, action £ does not have an input.

In Figure 5(i), presume that action a produces (or consumes) a stream object. In this case, action d is
inferred in parallel with a since stream objects require a one-to-one connection between actions. Actions a
and d both start upon completion of action £. If action d also has a buffer input, then another action shall be

Copyright © 2021 Accellera. All rights reserved.
53

Portable Test and Stimulus Standard 2.0 — April 2021

inferred to provide that input. For Figure 5(i), action £ can be presumed to have a second buffer output that
gets bound to action d, although a second buffer-providing action could also have been inferred.

If action a produces a buffer object, the buffer may be connected to another action with a compatible input
type. In the case where a . out and b. in are incompatible, action e (or a series of actions) may be inferred
to receive the output of action a and produce the input to action b. If a. out and b . in are compatible, then
the direct connection between a . out and b. in would be inferred here, in which case no action would be
inferred between them, although an action inferred to supply the input to c (or for some other reason) could
be scheduled between them.

Similarly, in the absence of an explicit binding of b. out to c. in, and if they are incompatible, a series of
actions may be inferred prior to the start of action c in order to provide the input of action c. These inferred
actions will be scheduled independent of b unless their data flow requirements create scheduling constraints
relative to b. As the terminal action in the activity, no action may be inferred after action c however, even if
action c produces a buffer object as an output.

Ifb.out and c. in are incompatible, it is possible to infer another action, Jj, to supply the buffer input to
c.1in, as shown in Figure 5(ii). In this case, there are two constraints on when the execution of action ¢ may
begin. The activity scheduling requires action b to complete before action c starts. The buffer object
semantics also require action j to complete before action c starts. If action j requires a buffer input, a series
of actions could be inferred to supply the buffer object. That inferred action chain could eventually be bound
to a previously inferred action, such as action d as shown in Figure 5(ii), or it may infer an independent
series of actions until it infers an initial action that only produces an output or until the inferencing limit is
reached. Since the output of action b is not bound to action c, action b is treated as a terminating action, so
no subsequent actions may be inferred after action b.

Finally, Figure 5(iii) shows the case where action ¢ produces or consumes a stream object. In this case, even
though action c is the terminating action of the activity, action p shall be inferred to satisfy the stream object
semantics for action c. Here, action p is also treated as a terminating action, so no subsequent actions may
be inferred. However, additional actions may be inferred either preceding or in parallel to action p to satisfy
its data flow requirements. Each action thus inferred is also treated as a terminating action. Similarly, since
action b is not bound to action c, b shall also be treated as a terminating action.

5.4 Constraints and inferencing

Data flow and resource objects may define constraint expressions on the values of their data fields
(including instance_id in the case of resource objects). In addition, actions may also define constraint
expressions on the data fields of their input/output flow objects and locked/shared resource objects. For data
flow objects, all constraints defined in the object and in all actions that are bound to the object are combined
to define the legal set of values available for the object field. Similarly, the constraints defined for a resource
object shall be combined with the constraints defined in all actions that claim the resource. Inferred actions
or data flow objects that result in constraint contradictions are excluded from the legal scenario. At least one
valid solution must exist for the scenario model for that model to be considered valid.

5.5 Summary

In portable stimulus, a single PSS model may be used to generate a set of scenarios, each of which may have
different sets of inferred actions, data flow objects, and resources, while still implementing the critical
verification intent explicitly specified in the activity. Each resulting scenario may be generated as a test
implementation for the target platform by taking the behavior mapping implementation embedded in each
resulting atomic action and generating output code that assembles the implementations and provides any
other required infrastructure to ensure the behaviors execute on the target platform according to the
scheduling semantics defined by the original PSS model.

Copyright © 2021 Accellera. All rights reserved.
54

Portable Test and Stimulus Standard 2.0 — April 2021

6. Execution semantic concepts

6.1 Overview

A PSS test scenario is identified given a PSS model and an action type designated as the root action. The
execution of the scenario consists essentially in executing a set of actions defined in the model, in some
(partial) order. In the case of atomic actions, the mapped behavior of any exec body clauses (see 22.1.3) is
invoked in the target execution environment, while for compound actions the behaviors specified by their
activity statements are executed.

All action executions observed in a test run either correspond to those explicitly called by traversed activities
or are implicitly introduced to establish flows that are correct with respect to the model rules. The order in
which actions are executed shall conform to the flow dictated by the activities, starting from the root action,
and shall also be correct with respect to the model rules. Correctness involves consistent resolution of
actions’ inputs, outputs, and resource references, as well as satisfaction of scheduling constraints. Action
executions themselves shall reflect data attribute assignments that satisfy all constraints.

6.2 Assumptions of abstract scheduling

Guarantees provided by PSS are based on general capabilities that test realizations need to have in any target
execution environment. The following are assumptions and invariants from the abstract semantics
viewpoint.

6.2.1 Starting and ending action executions

PSS semantics assume that target-mapped behavior associated with atomic actions can be invoked in the
execution environment at arbitrary points in time, unless model rules (such as state or data dependencies)
restrict doing so. They also assume that target-mapped behavior of actions can be known to have completed.

PSS semantics make no assumptions on the duration of the execution of the behavior. They also make no
assumptions on the mechanism by which an implementation would monitor or be notified upon action
completion.

6.2.2 Concurrency

PSS semantics assume that actions can be invoked to execute concurrently, under restrictions of model rules
(such as resource contentions).

PSS semantics make no assumptions on the actual threading framework employed in the execution
environment. In particular, a target may have a native notion of concurrent tasks, as in SystemVerilog
simulation; it may provide native asynchronous execution threads and means for synchronizing them, such
as embedded code running on multi-core processors; or it may implement time sharing of native execution
thread(s) in a preemptive or cooperative threading scheme, as is the case with a runtime operating system
kernel. PSS semantics do not distinguish between these.

6.2.3 Synchronized invocation

PSS semantics assume that action invocations can be synchronized, i.e., logically starting at the same time.
In practice there may be some delay between the invocations of synchronized actions. However, the “sync-
time” overhead is (at worse) relative to the number of actions that are synchronized and is constant with
respect to any other properties of the scenario or the duration of any specific action execution.

Copyright © 2021 Accellera. All rights reserved.
55

Portable Test and Stimulus Standard 2.0 — April 2021

PSS semantics make no assumptions on the actual runtime logic that synchronizes native execution threads
and put no absolute limit on the “sync-time” of synchronized action invocations.

6.3 Scheduling concepts

PSS execution semantics define the criteria for legal runs of scenarios. The criterion covered in this section
is stated in terms of scheduling dependency—the fundamental scheduling relation between action
executions. Ultimately, scheduling is observed as the relative order of behaviors in the target environment
per the respective mapping of atomic actions. This section defines the basic concepts, leading up to the
definition of sequential and parallel scheduling of action executions.

6.3.1 Preliminary definitions

a)

b)

d)

e)

An action execution of an atomic action type is the execution of its exec-body block,” with values
assigned to all of its parameters (reachable attributes). The execution of a compound action consists
in executing the set of atomic actions it contains, directly or indirectly. For more on execution
semantics of compound actions and activities, see Clause 13.

An atomic action execution has a specific start-time—the time in which its exec-body block is
entered, and end-time—the time in which its exec-body block exits (the test itself does not complete
successfully until all actions that have started complete themselves). The start-time of an atomic
action execution is assumed to be under the direct control of the PSS implementation. In contrast,
the end-time of an atomic action execution, once started, depends on its implementation in the target
environment, if any (see 6.2.1).

The difference between end-time and start-time of an action execution is its duration.

A scheduling dependency is the relation between two action executions, by which one necessarily
starts after the other ends. Action execution b has a scheduling dependency on a if b’s start has to
wait for a’s end. The temporal order between action executions with a scheduling dependency
between them shall be guaranteed by the PSS implementation regardless of their actual duration or
that of any other action execution in the scenario. Taken as a whole, scheduling dependencies con-
stitute a partial order over action executions, which a PSS solver determines and a PSS scheduler
obeys.

Consequently, the lack of scheduling dependency between two action executions (direct or indirect)
means neither one must wait for the other. Having no scheduling dependency between two action
executions implies that they may (or may not) overlap in time.

Action executions are synchronized (scheduled to start at the same time) if they all have the exact
same scheduling dependencies. No delay shall be introduced between their invocations, except a
minimal constant delay (see 6.2.3).

Two or more sets of action executions are independent (scheduling-wise) if there is no scheduling
dependency between any two action executions across the sets. Note that within each set, there may
be scheduling dependencies.

Within a set of action executions, the initial ones are those without scheduling dependency on any
other action execution in the set. The final action executions within the set are those in which no
other action execution within the set depends.

7Throughout this section, exec-body block is referred to in the singular, although it may be the aggregate of multiple exec-body clauses
in different locations in PSS source code (e.g., in different extensions of the same action type).

Copyright © 2021 Accellera. All rights reserved.
56

Portable Test and Stimulus Standard 2.0 — April 2021

6.3.2 Sequential scheduling

Action executions a and b are scheduled in sequence if b has a scheduling dependency on a. Two sets of
action executions, S; and §,, are scheduled in sequence if every initial action execution in S, has a
scheduling dependency on every final action execution in S;. Generally, sequential scheduling of N action
execution sets S; .. S, is the scheduling dependency of every initial action execution in S; on every final
action execution in S;_; for every i from 2 to N, inclusive.

For examples of sequential scheduling, see 13.3.3.3.
6.3.3 Parallel scheduling

N sets of action executions S; .. S, are scheduled in parallel if the following two conditions hold:

— All initial action executions in all N sets are synchronized (i.e., all have the exact same set of sched-
uling dependencies).

— 8, .. S, are all scheduled independently with respect to one another (i.e., there are no scheduling
dependencies across any two sets S; and S)).

For examples of parallel scheduling, see 13.3.4.3.
6.3.4 Concurrent scheduling

N sets of action executions S .. S,, are scheduled concurrently if S; .. S, are all scheduled independently with
respect to one another (i.e., there are no scheduling dependencies across any two sets S; and).

Copyright © 2021 Accellera. All rights reserved.
57

Portable Test and Stimulus Standard 2.0 — April 2021

7. C++ specifics

7.1 General

All PSS/C++ types are defined in the pss namespace and are the only types defined by this specification.
Detailed header files for the C++ constructs introduced in the C++ syntax sections of this document (e.g.,
Syntax 8) are listed in Annex C.

The prototype for functions (constructors or other functions) in header files may specify a type within a
comment, such as in the example below:

template <class... R> sequence (R&&... /* detail::Stmt */ r)

The type in the comment signifies what the specification allows to be passed as argument type for the
function. This convention is typically used with C++ parameter packs.

Nested within the pss namespace is the detail namespace. Types defined within the detail
namespace are documented only in order to capture the intended user-visible behavior of the PSS/C++
types. Any code that directly refers to types in the detail namespace shall be PSS implementation-
specific. A PSS implementation is allowed to remove, rename, extend, or otherwise modify the types in the
detail namespace—as long as user-visible behavior of the types in the pss namespace is preserved.

PSS/C++ object hierarchies are managed via the scope object, as shown in Syntax 8.

pss::scope
Defined in pss/scope . h (see C.43).
class scope;
Base class for scope.
Member functions
scope (const char* name) :constructor

scope (const std::stringé& name) : constructor
template <class T> scope (T* s) :constructor

Syntax 8—C++: scope declaration

Most PSS/C++ class constructors take scope as their first argument; this argument is typically passed the
name of the object as a string.

The constructor of any user-defined classes that inherit from a PSS class shall always take const scopeé&
as an argument and propagate the this pointer to the parent scope. The class type shall also be declared
using the type_decl<> template object, as shown in Syntax 9.

Copyright © 2021 Accellera. All rights reserved.
58

Portable Test and Stimulus Standard 2.0 — April 2021

pss::type_decl
Defined in pss/type_decl.h (see C.49).

template <class T> class type decl;

Declare a type.

Member functions
type decl () :constructor
T* operator->() :access underlying type
T& operator* () :accessunderlying type

Syntax 9—C++: type declaration

Example 5 shows an example of this usage.

class Al : public action {
public:
Al (const scope& s) : action (this) {}
}i
type decl<Al> Al decl;

Example 5—C++: type declaration

The PSS_CTOR convenience macro for constructors:
#define PSS CTOR(C,P) public: C (const scope& p) : P (this) {}

can also be used to simplify class declarations, as shown in Example 6.

class Al : public action {
PSS CTOR(Al,action);

}i

type decl<Al> Al decl;

Example 6—C++: Simplifying class declarations

Copyright © 2021 Accellera. All rights reserved.
59

Portable Test and Stimulus Standard 2.0 — April 2021

7.2 PSS/DSL features not supported in PSS/C++

When designing a new language such as PSS/DSL, the language can be tailored to address specific
requirements as needed. Unfortunately, when trying to design a C++ library to implement the same feature
set, certain limitations of the C++ language rendered supporting some features impossible. The following
table outlines the PSS/DSL features that are not supported in PSS/C++, pointing to the relevant sections of
the LRM.

Table 4—PSS/DSL features not supported in PSS/C++

Section(s) Description
4.8 Aggregate literals are not supported in PSS/C++.
5.3.1 PSS/C++ does not provide a mechanism for making pss_ top-rooted static references into the com-

ponent tree. Relative references are supported.

8.1.1 PSS/C++ does not provide an explicit static const construct. C++ language features may be used
to achieve similar functionality.

8.2.2 PSS/C++ non-rand attributes of bit and int types support specifying an initial value as an expres-
sion of other attributes. Other attribute types (e.g., enum, string) require the user to specify a C++
constant expression. PSS/C++ rand attributes do not support specification of an initial value.

8.8.2.3 PSS/C++ does not support array initialization or array methods except size () and sum().

9.5.8 PSS/C++ does not support the conditional operator (<cond> ? <val _true> : <val_false>).

9.59.2 PSS/C++ only supports the open_range_list use of the set membership operator.

9.6.1 PSS/C++ supports bit-selects on scalar fields, but does not support part-selects.
11.3.3 PSS/C++ does not support declaring abstract actions.
12.1 PSS parameterized types are not supported in PSS/C++. Referencing PSS parameterized types across
PSS/C++ and PSS/DSL is not supported.
13.2.1 PSS/C++ does not support declaring action handles and activity data fields within an activity scope.
13.3.3.1 PSS/C++ requires the sequence block to be explicitly specified, while PSS/DSL interprets a curly

brace-enclosed scope as a sequence.

13.3.6.1 There is no PSS/C++ equivalent for the fine-grained scheduling modifiers to either parallel or

schedule.
13432 Only iteration over arrays is supported in PSS/C++. foreach iteration over other collection types is
17.1.7.2 not supported. Also, in PSS/C++, the index and iteration variables must be explicitly declared in the
22.7.8.2 containing scope of the foreach loop.
13.6 PSS/C++ does not define a mechanism for referring to the set of activities declared in a super-type—in
other words, an equivalent to activity super stmt.
13.8 Labeled activity statements are not supported in PSS/C++.
14.4.2 PSS/C++ does not support arrays of object references.
15.2.2
17.2.1 PSS/C++ does not support scheduling constraints.

Copyright © 2021 Accellera. All rights reserved.
60

Portable Test and Stimulus Standard 2.0 — April 2021

Table 4—PSS/DSL features not supported in PSS/C++ (Continued)

Section(s) Description

20.2.7 Since PSS/C++ does not support template types (see 12.1), type extension of template types is obvi-
ously not supported.

21.1.1.2 PSS/C++ does not provide features directly corresponding to the PSS/DSL package and import con-
structs. The C++ namespace and using constructs provide similar functionality.

22.1.5.2 PSS/C++ does not define a mechanism to invoke procedural blocks in a super-type—in other words,
an equivalent to exec_super_stmt.

22.2.1.2 PSS/C++ functions declared outside a component are considered to be in the global PSS namespace
even if they are declared within a C++ namespace.

2222 PSS/C++ function parameters and return types support int and bit types with width and range infor-
mation, but do not support associating range information with string or enum types. PSS/C++ func-
tion parameters of class arg support array types with width or range specifications, while the
in_arg/out_arg/inout_arg/result classes do not.

22.2.3 PSS/C++ function parameter default values of type int and bit may be specified using the in_arg
class. Parameters of other types, and parameters specified using arg and inout_arg may not be
given default values.

2232 PSS/C++ version only allows definition of native PSS target functions, not of solve functions. PSS/
C++ does allow declaration of function prototypes for both target and solve functions.

22.7.2.2 PSS/C++ may require special handling for destruction of local variables declared in procedural scopes.
The variables need to be destructed in the reverse order of construction. This is automatically achieved
if all variables are on the stack. Otherwise, if they are allocated on the heap, the user must ensure cor-
rect order of destruction.

Clause 23 | PSS/C++ does not provide features directly corresponding to PSS/DSL conditional code processing.
Native C++ features (e.g., the pre-processor) provide similar features.

Clause 24 | PSS/C++ does not provide an interface to the core library features—storage management, register
models, and executors.

Copyright © 2021 Accellera. All rights reserved.
61

Portable Test and Stimulus Standard 2.0 — April 2021

8. Data types

8.1 General

In this document, “scalar” means a single data item of type bit, int, bool, enum, string, or chandle, unless
otherwise specified. A struct (see 8.7) or collection (see 8.8) is not a scalar. A typedef (see 8.10) of a scalar
data type is also a scalar data type.

The term “aggregate” refers both to collections and to structs. The term “aggregate” does not include
actions, components, flow objects, or resource objects. Aggregates may be nested. A typedef of an

aggregate data type is also an aggregate data type.

A “plain-data type” is a scalar or an aggregate of scalars. Nested aggregates are also plain-data types. A
typedef of a plain-data type is also a plain-data type.

Fields of all scalar types except chandle are randomizable. Array collections of randomizable types are also
randomizable, but the list, map, and set collection types are not randomizable.

A field of randomizable type may be declared as random by preceding its declaration with the rand
keyword. It shall be an error to declare a field of non-randomizable type as rand.

8.1.1 DSL syntax

The DSL syntax for data types and data declarations is shown in Syntax 10.

data_type ::=
scalar_data_type
| collection_type
| reference_type
| type_identifier
scalar_data type ::=
chandle type
| integer_type
| string_type
| bool type
| enum_type
data_declaration ::= data_type data_instantiation { , data_instantiation } ;
data_instantiation ::= identifier [array_dim] [= constant expression]
array _dim ::= [constant_expression |
attr_field ::=[access_modifier] [rand | static const] data_declaration

access_modifier ::= public | protected | private

Syntax 10—DSL: Data types and data declarations

Scalar data types are described in 8.2 through 8.6, structure data types are described in 8.7, and collection
data types are described in 8.8. Reference types are described in 8.9. Access protection and access modifiers
are described in 20.4.

Copyright © 2021 Accellera. All rights reserved.
62

Portable Test and Stimulus Standard 2.0 — April 2021

NOTE—PSS/C++ does not provide an explicit static const construct. C++ language features may be used to
achieve similar functionality.

8.2 Numeric types

PSS supports two 2-state numeric data types. These fundamental numeric data types are summarized in
Table 5, along with their default widths and value domains.

Table 5—Numeric data types

Data type Default width Default domain | Signed/Unsigned

int 32 bits -2731 .. (2"31-1) Signed

bit 1 bit 0..1 Unsigned

4-state values are not supported. If 4-state values are passed into the PSS model via the foreign procedural
interface (see 22.4), any X or Z values are converted to 0.

8.2.1 DSL syntax

The DSL syntax for numeric types is shown in Syntax 11.

integer type ::= integer atom_type
[[constant_expression[:0]]]
[in [domain_open_range list]]
integer_atom_type ::=
int
| bit
domain_open_range list ::= domain_open_range value { , domain_open_range value }
domain_open range value ::=
constant_expression [.. constant_expression]
| constant_expression ..

| .. constant_expression

Syntax 11—DSL: Numeric type declaration

The following also apply:

a) Numeric values of bit type are unsigned. Numeric values of int type are signed.

b) The default value of the bit and int types is 0.

¢) Widths should be specified with a single expression with a constant positive integer value (e.g.,
bit[4]). A specification of [N] is equivalent to [N-1:0]. A type specified using dual bounds
shall use 0 as the lower bound and a constant non-negative integer value as the upper bound. Speci-
fying a width using dual bounds is considered deprecated in PSS 2.0, and may be removed in a
future version.

d) A value domain may be specified for the type. The domain specification consists of a list of one or
more values and/or value ranges.

Copyright © 2021 Accellera. All rights reserved.
63

Portable Test and Stimulus Standard 2.0 — April 2021

e) The width and value domain specifications are independent. A variable of the declared type can hold
values within the intersection of the possible values determined by the specified width (or the
default width, if not specified) and the explicit value domain specification, if present.

8.2.2 C++ syntax

The corresponding C++ syntax for Syntax 11 is shown in Syntax 12 through Syntax 16.

pss::bit
Defined in pss/bit.h (see C.7).
using bit = unsigned int;

Declare a bit.

Syntax 12—C++: bit declaration

pss::width

Defined in pss/width.h (see C.52).
class width;

Declare the width of an attribute.

Member functions

width (const std::size té& size) :constructor, width in bits
width (const std::size t& lhs, const std::size t& rhs) :constructor, width as bit range

Syntax 13—C++: Numeric type width declaration

Copyright © 2021 Accellera. All rights reserved.
64

Portable Test and Stimulus Standard 2.0 — April 2021

pss::range

Defined in pss/range.h (see C.41).
class range;

Declare a range of values.

Member functions

range (const detail::AlgebExpr value) : constructor, single value

range (const detail::AlgebExpr lhs, const detail::AlgebExpr rhs) :constructor,
value range

range (const Loweré& lhs, const detail::AlgebExpr rhs) : constructor, lower-bounded
value range

range (const detail::AlgebExpr lhs, const Upperé& rhs) : constructor, upper-bounded
value range

rangeé& operator () (const detail::AlgebExpr lhs, const detail::AlgebExpr rhs)
: function chaining to declare additional value ranges

range& operator () (const detail::AlgebExpr value) :functionchaining to declare additional
values

Syntax 14—C++: Numeric type range declaration

pss::attr

Defined in pss/attr.h (see C.5).
template <class T> class attr;

Declare a scalar non-random attribute.

Member functions

attr (const scope& s) :constructor

attr (const scope& s, const T& init wval) :constructor, with initial value

attr (const scope& s, const widthé& a width) :constructor, with width (T = int or bit only)

attr (const scope& s, const width& a width, const T& init val) :constructor, with
width and initial value (T = int or bit only)

attr (const scope& s, const range& a_range) :constructor, with range (T = int, bit, string, or
enum)

attr (const scope& s, const range& a_range, const T& init val) : constructor, with
range and initial value (T = int, bit, string, or enum)

attr (const scope& s, const width& a width, const range& a range) :constructor,
with width and range (T = int or bit only)

attr (const scopeé& s, const widthé& a width, const range& a range,
const T& init wval) : constructor, with width, range and initial value (T = int or bit only)

T& val () :accesstounderlying data

Syntax 15—C++: Scalar non-rand declarations

NOTE—PSS/C++ non-rand attributes of bit and int types support specifying an initial value as an expression of
other attributes. Other attribute types (e.g., enum, string) require the user to specify a C++ constant expression. PSS/
C++ rand attributes do not support specification of an initial value.

Copyright © 2021 Accellera. All rights reserved.
65

Portable Test and Stimulus Standard 2.0 — April 2021

pss::rand_attr

Defined in pss/rand_attr.h (see C.40).
template <class T> class rand attr;

Declare a scalar random attribute.

Member functions

rand _attr (const scope& name) :constructor

bit only)

rand_attr (const scope& name, const range& a_range) :constructor, with range (T =int,
bit, string, or enum)

rand attr (const scope& name, const widthé& a width, const range& a range)
constructor, with width and range (T = int or bit only)

T& val () :accessrandomized data

rand attr (const scope& name, const widthé& a width) :constructor, with width (T = int or

Syntax 16—C++: Scalar rand declarations

8.2.3 Examples
DSL and C++ numeric data type examples are shown in-line in this section.

Declare a signed variable that is 32 bits wide.

DSL: int a;
C++: attr<int> a {"a"}:;

Declare a signed variable that is 5 bits wide.

DSL: int [4:0] a;
C++: attr<int> a {"a", width (4,0)};

Declare an unsigned variable that is 5 bits wide and has the valid values 0. . 31.

DSL: bit [5] in [0..31] b;
C++: attr<bit> b {"b", width(5), range (0,31)};

Declare an unsigned variable that is 5 bits wide and has the valid values 1, 2, and 4.

DSL: bit [5] in [1,2,4] c;
CH++: attr<bit> c {"c", width(5), range (1) (2) (4)};

Declare an unsigned variable that is 5 bits wide and has the valid values 0. . 10.

DSL: bit [5] in [..10] b; // 0 <= b <= 10
C++: attr<bit> b {"b", width(5), range(lower,10)};

Declare an unsigned variable that is 5 bits wide and has the valid values 10. . 31.

DSL: bit [5] in [10..] b; // 10 <= b <= 31
CH++: attr<bit> b {"b", width(5), range (10, upper)};

Copyright © 2021 Accellera. All rights reserved.
66

Portable Test and Stimulus Standard 2.0 — April 2021

8.3 Booleans

The PSS language supports a built-in Boolean type, with the type name bool. The bool type has two
enumerated values true (=1) and false (=0). When not initialized, the default value of a bool type is false.

C++ uses attr<bool> or rand attr<bool> to represent Boolean types. These are template
specializations of at tr<T> and rand_attr<T>, respectively (see Syntax 15 and Syntax 16).

8.4 Enumeration types
An enumeration type is a distinct user-defined type whose value is restricted to a specified set of integral
named constants. Enumeration data types also can be easily referenced or displayed using the enumeration

constant names as opposed to their numeric values.

The syntax for declaration of enumeration types is shown in Syntax 17 and Syntax 18.

8.4.1 DSL syntax

The DSL syntax for declaration of enumeration types is shown in Syntax 17.

enum_declaration ::= enum enum_identifier { [enum_item { , enum item } | }
enum_identifier ::= identifier

enum_item ::= identifier [= constant_expression |

enum_type_identifier ::= type_identifier

enum_type ::= enum_type identifier [in [domain_open_range list]]

Syntax 17—DSL: enum declaration

An enumeration type declaration (enum_declaration) consists of the keyword enum followed by the name
of the type (enum_identifier) and a list in curly braces of constant names (enum items) with optional constant
integer value assignments.

The following also apply:

a) enum_items are considered static constant members of the enumeration type in which they are
declared.

b) The first enum_item in the list, if not explicitly assigned a value, is by default assigned the value 0.
Each following enum_item, if not explicitly assigned a value, is assigned a value of the previous
enum_item + 1.

c) enum_item values need not be contiguous, nor need they be in ascending arithmetic order. An
enum_item may be assigned a negative value.

d) Each enum_item must have a distinct integer value. No two enum_items may have the same value.
e) Enumeration types may be extended with the extend statement. See 20.2, particularly 20.2.5.

f) enum_item identifiers must be unique in the scope of the enumeration type across its initial defini-
tion and extensions, if any. However, they need not be unique across different enumeration types
declared in the same namespace.

g) enum_items can be referenced using their qualified name in the form 'enum-type-
name: :enum-item-name'.

Copyright © 2021 Accellera. All rights reserved.
67

Portable Test and Stimulus Standard 2.0 — April 2021

h) In expression contexts where the expected type is an enumeration type, enum_items of that type can
be referenced without qualification (see 9.4.3 for the definition of the expected type in expression
contexts).

i) Anenum_declaration may contain an empty set of enum_items, and then have enum_items added in
extensions. It shall be illegal to declare an enumeration variable whose type contains no enum_items
across its initial definition and extensions.

7)) When not initialized, the default value of an enum field shall be the first enum_item in the list. This
is not necessarily the value 0 nor the enum_item with the minimum value.

Like numeric types, an enumeration type can be restricted to a range of values specified by a
domain_open_range list (see 8.2.1 and 8.2.3). The domain specification cannot be specified in the
enum_declaration itself. See examples of use in 8.4.3.

An enum attribute or enum_item may be used to assign values to an attribute of the same enumeration type
or in an equality comparison.

An enum attribute or enum_item of one enumeration type may be cast to another enumeration type using the
cast operator (see 8.11) if its value is valid for the target enumeration type. An enum attribute or enum_item
may be cast to integer and Boolean data types using the cast operator. Similarly, an integer or Boolean value
may be cast to an enumeration type if its value is valid for the target enumeration type.

8.4.2 C++ syntax

The corresponding C++ syntax for Syntax 17 is shown in Syntax 18.

The PSS_ENUM macro is used to declare an enumeration type. As in C++, enum_items may optionally
define values.

The PSS_EXTEND_ENUM macro is used to extend an enumeration type. Again, enum_items may optionally
define values.

pss::enumeration

Defined in pss/enumeration.h (see C.24).

#define PSS ENUM(enum name, enum item, enum item=value, ...) // 1
#define PSS EXTEND ENUM(ext name, base name,
enum_item, enum item=value, ...) // 2

1) Declare an enumeration type with a name and a list of items (values optional)

2) Extend an enumeration type with a name and a list of items (values optional)
Member functions

template <class T> enumeration& operator=(const T& t) :assignanenum value

Syntax 18—C++: enum declaration

In PSS/C++, enum_items are referenced using the name of the enumeration type and the scope operator.
enum_items declared in an extension are referenced using the name of the extension and the scope operator.

Copyright © 2021 Accellera. All rights reserved.
68

Portable Test and Stimulus Standard 2.0 — April 2021

8.4.3 Examples

Examples of enum usage are shown in Example 7 and Example 8.

enum config modes e {UNKNOWN, MODE A=10, MODE B=20, MODE C=35, MODE D=40};

component uart c {
action configure {
rand config modes e mode;
constraint {mode != UNKNOWN; }

Example 7—DSL: enum data type

The corresponding C++ example for Example 7 is shown in Example 8.

PSS ENUM(config modes e, UNKNOWN, MODE A=10, MODE B=20, MODE C=35,
MODE_D=40) ;

class uart c : public component {
class configure : public action {
PSS CTOR (configure, action);
rand attr<config modes e> mode {"mode"};
constraint c {"c", mode != config modes e::UNKNOWN};
}i
type decl<configure> configure decl;
}7

Example 8—C++: enum data type

See an example of extending an enumeration in 20.2.5.
Examples of domain specifications for enumeration types are shown below:
Declare an enum of type config modes_e with values MODE A, MODE_B, or MODE_C.
DSL: rand config modes e in [MODE A..MODE C] mode ac;
C++: rand attr<config modes e> mode ac {"mode ac",
range (config modes e::MODE A, config modes e::MODE C)};
Declare an enum of type config modes_e with values MODE A or MODE_C.
DSL: rand config modes e in [MODE A, MODE C] mode ac;
C++: rand_attr<config modes_e> mode_ac {"mode_ac",
range (config modes e::MODE A) (config modes e::MODE C) };
Declare an enum of type config modes_e with values UNKNOWN, MODE_A, or MODE_B.
DSL: rand config modes e in [..MODE B] mode ub;

C++: rand_attr<config modes e> mode_ ub {"mode ub",
range (lower, config_modes_e::MODE_B)};

Copyright © 2021 Accellera. All rights reserved.
69

Portable Test and Stimulus Standard 2.0 — April 2021

Declare an enum of type config modes_e with values MODE B, MODE_C, or MODE_D.

DSL: rand config modes e in [MODE B..] mode bd;
C++: rand_attr<config modes_e> mode_bd {"mode bd",
range (config modes e::MODE B, upper) };

Note that an open_range_list of enums may be used in set membership (in) expressions (see 9.5.9) and as a
match_choice expression in match statements (see 13.4.6 and 22.7.10).

8.5 Strings

The PSS language supports a built-in string type with the type name string. When not initialized, the default
value of a string shall be the empty string literal (" "). See also Syntax 19, Syntax 20, and Syntax 21.

8.5.1 DSL syntax

string_type ::= string [in [string_literal { , string_literal } |]
Syntax 19—DSL: string declaration

Comma-separated domain specifications are allowed for string data types (see 8.2.1).
8.5.2 C++ syntax
C++ uses attr<std: :string> (see Syntax 20) or rand_attr<std::string> (see Syntax 21) to

represent strings. These are template specializations of attr<T> and rand_attr<T>, respectively (see
Syntax 15 and Syntax 16).

pss::attr
Defined in pss/attr.h (see C.95).
template<> class attr<std::string>;
Declare a non-rand string attribute.
Member functions

attr (const scope& name) :constructor
attr(const scope& name, const std::strings& init val) : constructor, with initial value
std::string& val () :access to underlying data

Syntax 20—C++: Non-rand string declaration

Copyright © 2021 Accellera. All rights reserved.
70

Portable Test and Stimulus Standard 2.0 — April 2021

pss::rand_attr

Defined in pss/rand_attr.h (see C.40).
template<> class rand attr<std::string>;

Declare a randomized string.

Member functions

rand _attr (const scope& name) :constructor
std::string& val () :accesstounderlying data

Syntax 21—C++: Rand string declaration

8.5.3 Examples

The value of a random string-type field can be constrained with equality constraints and can be compared
using equality operators, as shown in Example 9 and Example 10.

struct string s {
rand bit a;
rand string s;

constraint {

if (a == 1) {
s == "FOO";
} else {
s == "BAR";

Example 9—DSL: String data type

The corresponding C++ example for Example 9 is shown in Example 10.

struct string s : public structure {
rand attr<bit> a {"a"};
rand attr<std::string> s {"s"};

constraint cl { "cl1",
if then else {

cond (a == 1),
s == "FOO",
s == "BAR"

}i
b

Example 10—C++: String data type

Copyright © 2021 Accellera. All rights reserved.
71

Portable Test and Stimulus Standard 2.0 — April 2021

Declare string with values "Hello", "Hallo", or "Ni Hao".

DSL: rand string in ["Hello", "Hallo", "Ni Hao"] hello_s;
C++: rand attr<std::string>
hello s {"hello s", range ("Hello") ("Hallo") ("Ni Hao")};

Note that an open_range list, composed solely of individual string literals, may also be used in set
membership (in) expressions (see 9.5.9) and as a match_choice expression in match statements (see 13.4.6
and 22.7.10). Ranges of string literals (e.g., "a" . . "b") are not permitted.

8.6 Chandles

The chandle type (pronounced “see-handle”) represents an opaque handle to a foreign language pointer as
shown in Syntax 22 and Syntax 23. A chandle is used with the foreign procedural interface (see 22.4) to
store foreign language pointers in the PSS model and pass them to foreign language functions. See Annex E
for more information about the foreign procedural interface.

A chandle has the following restrictions:
— The rand qualifier may not be applied to it.
— The only logical operators it may be used with are == and !=.

— The only literal value with which it may be compared is 0, which is equivalent to a null handle in the
foreign language.

When not initialized, the default value of a chandle shall be 0.

8.6.1 DSL syntax

chandle type ::= chandle
Syntax 22—DSL : chandle declaration

8.6.2 C++ syntax

pss::chandle

Defined in pss/chandle.h (see C.9).
class chandle;

Declare a chandle.

Member functions

chandle& operator= (detail::AlgebExpr val) :assignto chandle

Syntax 23—C++: chandle declaration

Copyright © 2021 Accellera. All rights reserved.
72

Portable Test and Stimulus Standard 2.0 — April 2021

8.6.3 Example

Example 11 shows a struct containing a chandle field that is initialized by the return of a foreign language
function.

function chandle do_init();

struct info s {
chandle ptr;

exec pre solve {
ptr = do_init();
}

Example 11—DSL: chandle data type

8.7 Structs

A struct type is an aggregate of data items, as shown in Syntax 24 and Syntax 25.

8.7.1 DSL syntax

struct_declaration ::= struct_kind struct_identifier [template param_decl list]
[struct_super spec] { { struct body item } }

struct_kind ::=
struct
| object kind
object_kind ::=
buffer
| stream
| state
| resource
struct_super_spec ::= : type_identifier
struct_body_item ::=
constraint_declaration
| attr_field
| typedef declaration
| exec_block stmt
| attr_group
| compile_assert_stmt
| covergroup declaration
| covergroup_instantiation
| struct_body compile if

| stmt_terminator

Syntax 24—DSL : struct declaration

Copyright © 2021 Accellera. All rights reserved.
73

Portable Test and Stimulus Standard 2.0 — April 2021

A struct is a plain-data type (see 8.1). That is, a struct may contain scalar data items and aggregates thereof.
A struct declaration may specify a struct_super_spec, a previously defined struct type from which the new
type inherits its members, by using a colon (:), as in C++. In addition, structs may

— include constraints (see 17.1) and covergroups (see 19.1 and 19.2);

— include exec blocks of any kind other than init_down, init_up, and body (see 22.1).

Data items in a struct shall be of plain-data types (whether randomizable or not). Declarations of randomiz-
able data items may optionally include the rand keyword to indicate that the element shall be randomized
when the overall struct is randomized (see Example 12 and Example 13). 17.4.1 describes struct random-
ization in detail.

Note that chandles are a non-randomizable scalar data type. Lists, maps, and sets are non-randomizable col-
lection types (see 8.8).

8.7.2 C++ syntax
In C++, structures shall derive from the structure class.

The corresponding C++ syntax for Syntax 24 is shown in Syntax 25, Syntax 26, and Syntax 27.

pss::structure

Defined in pss/structure.h (see C.47).
class structure;

Base class for declaring a structure.

Member functions

structure (const scopeé& s) :constructor
virtual void pre_ solve () :in-line pre_solve exec block
virtual void post_solve () :in-line post_solve exec block

Syntax 25—C++: struct declaration

Copyright © 2021 Accellera. All rights reserved.
74

Portable Test and Stimulus Standard 2.0 — April 2021

pss::attr

Defined in pss/attr.h (see C.5).
template <class T> class attr;

Declare a non-random struct attribute.

Member functions

attr (const scope& name) :constructor

T& val() :access data
T* operator->() :access underlying structure
T& operator* () :accessunderlying structure

Syntax 26—C++: Struct non-rand declarations

pss::rand_attr

Defined in pss/rand_attr.h (see C.40).
template <class T> class rand attr;

Declare a random struct attribute.

Member functions

rand attr (const scopeé& name) :constructor

T& val () :accessrandomized data
T* operator->() :access underlying structure
T& operator* () :accessunderlying structure

Syntax 27—C++: Struct rand declarations

8.7.3 Examples

Struct examples are shown in Example 12 and Example 13.

struct axi4 trans req {
rand bit[31:0] axi addr;
rand bit[31:0] axi write data;

bit is write;
rand bit[3:0] prot;
rand bit[1:0] semad;

Example 12—DSL: Struct with rand qualifiers

Copyright © 2021 Accellera. All rights reserved.
75

Portable Test and Stimulus Standard 2.0 — April 2021

struct axi4 trans req : public structure {
rand attr<bit> axi addr {"axi addr", width (31, 0)};
rand attr<bit> axi write data {"axi write data", width (31, 0)};
attr<bit> is write {"is write"};
rand attr<bit> prot ({"prot", width (3, 0)};
rand attr<bit> sema4 {"semad", width (1, 0)};
bi

type decl<axid4 trans reqg> axid4 trans_req decl;

Example 13—C++: Struct with rand qualifiers

8.8 Collections

Collection types are built-in data types. PSS supports fixed-size array and variable-size list, map, and set
collections of plain-data types (see 8.1). Each kind of collection has its own keyword, and its declaration
specifies the data type of the collection elements (and for maps, also the data type of the key).

PSS also has limited support for fixed-sized arrays of action handles, components, and flow and resource
object references, as described in 8.8.2. These are not considered plain-data types. All other collections are

plain-data types.

8.8.1 DSL syntax

collection_type ::=
array < data type, array size expression >
| list < data_type >
| map < data type, data_type >
| set < data_type >
array size expression ::= constant expression
Syntax 28—DSL: Collection data types

In an array, each element is initialized to the default initial value of the element type, unless the array
declaration contains an initialization assignment. A list, map or set is initialized as an empty collection
unless the declaration contains an initialization assignment. A collection that is empty is as if it was assigned
an empty aggregate literal ({}). See 4.8 for more information on literal syntax and semantics used to
initialize collection types.

Collection store both scalar and aggregate elements by value. This means that an element’s value is captured
when it is added or assigned to a collection. Modifying the value of an element in a collection does not
modify the element originally added to the collection. In the example below, v1, a struct with two integer
values, is assigned as the first element of my 1ist. Modifying a in that element does not modify v1. (See
8.8.3 for more details on list operators and methods.)

Copyright © 2021 Accellera. All rights reserved.
76

Portable Test and Stimulus Standard 2.0 — April 2021

struct my_sl {
int a, b;

}

struct my s2 {
list<my sl1> my list;

exec pre solve ({

my sl vl = {.a=1,.b=2};

my list.push back(vl);

my list[0].a = 10; // my list == {{.a=10,.b=2}}, vl == {.a=1,.b=2}
}

Example 14—DSL: Modifying collection contents

Collection variables can be operated on with built-in operators using standard operator symbols (e.g., [], =,
==, etc.) or with built-in methods using a method name and an argument list in parentheses.

Operators and methods that modify the contents of a collection shall not be used in activities, constraints, or
covergroups. These are allowed only in exec blocks (see 22.1) and native functions (see 22.3). Operators

and methods that do not modify collection contents may be used in activities, constraints, and covergroups.

Arrays of randomizable types are randomizable. Lists, maps and sets are non-randomizable. It is legal to
have a rand struct field that contains non-randomizable collection types.

Collection types may be nested to describe more complex collections.

struct my s {
list<map<string, int>> m list of maps;
map<string, list<int>> m map_of lists;

}

Example 15—DSL: Nested collection types

8.8.2 Arrays

PSS supports fixed-sized arrays of plain-data types. Arrays may be declared with two different syntaxes, the
classical syntax where arrays are declared by adding square brackets with the array size
([constant_expression]) after the array name, referred to as the square array syntax, and the syntax that is
aligned to the other collection types, using angle brackets, referred to as the template array syntax.

int my int arrl([20]; // Square array declaration syntax
array<int,20> my int arr2; // Template array declaration syntax

Example 16—DSL: Array declarations

The same operators and methods may be applied to arrays declared using both syntaxes. However, the
template array syntax may be used where a data_type is required, enabling such capabilities as use as a
function return type, nested array types, and more.

Copyright © 2021 Accellera. All rights reserved.
77

Portable Test and Stimulus Standard 2.0 — April 2021

An array with N elements, is ordered, with the first element accessed using 0 as an index value with the []
operator, and the last element accessed using N-1 as an index value.

The square array syntax can also be used to declare fixed-size arrays of action handles, components, and
flow and resource object references. Individual elements of such arrays may be accessed using the []
operator. However, other operators and methods do not apply to these arrays, unless otherwise specified.
Action handle arrays are described in 13.3.1.1 and 13.3.2, component arrays are described in 10.2 and 10.5,
and object reference arrays are described in 14.4 and 15.2. Note that the elements of action handle arrays and
object reference arrays have reference semantics (see 8.9).

8.8.2.1 Array operators

The following operators are defined for arrays:

Index operator |]

Used to access a specific element of an array, given an index into the array. The index shall be an integral
value. See 9.6.2 for more information on the index operator.

Assignment operator =

Creates a copy of the array-type expression on the RHS and assigns it to the array on the LHS. See 9.3 for
more information on the assignment operator.

Equality operator ==

Evaluates to true if all elements with corresponding indexes are equal. Two arrays of different element types
or different sizes are incomparable. See 9.5.3 for more information on the equality operator.

Inequality operator =

Evaluates to frue if not all elements with corresponding indexes are equal. Two arrays of different element
types or different sizes are incomparable. See 9.5.3 for more information on the inequality operator.

Set membership operator in

The set membership operator can be applied to an array to check whether a specific element is currently
within the array. It evaluates to true if the element specified on the left of the operator exists in the array
collection on the right of the operator. The type of the element shall be the same as the array’s element data
type. See 9.5.9 for more information on the set membership operator.

foreach statement

The foreach statement can be applied to an array to iterate over the array elements within an activity, a
constraint or native exec code. See 13.4.3, 17.1.7, and 22.7.8, respectively, for more information on the
foreach statements in these contexts.

Copyright © 2021 Accellera. All rights reserved.
78

Portable Test and Stimulus Standard 2.0 — April 2021

8.8.2.2 Array methods

The following methods are defined for arrays:
function int size();

Returns the number of elements in the array. Since arrays have fixed sizes, the returned value is considered a
constant expression.

function int sum();

Returns the sum of all elements currently stored in the array. This function can only be used on arrays of a
numeric data type (int or bit). The method can be used in a constraint to constrain an array of random
elements to have a sum of a certain value.

function list<data type> to_list();

Returns a list containing the elements of the array. The list’s element data type is the same as the data type
of the array elements. The list elements are ordered in the same order as the array.

function set<data_type> to_set();

Returns a set containing the elements of the array. Each element value will appear once. The set’s element
data type is the same as the data type of the array elements. The set is unordered.

8.8.2.3 C++ syntax

The corresponding C++ syntax for arrays is shown in Syntax 29 and Syntax 30.

pss::attr_vec

Defined in pss/attr.h (see C.5).

template <class T> using vec = std::vector <T>;
template <class T> using attr vec = attr<vec<T>>;

Declare array of non-random attributes.
Member functions

attr vec(const scope& name, const std::size_t count) :constructor

attr vec(const scope& name, const std::size t count, const width& a width)
constructor, with element width (T = int or bit only)

attrivec(const scopeé& name, const std::sizeit count, const rangeé& airange)
constructor, with element range (T = int or bit only)

attr vec(const scope& name, const std::size t count, const width& a width,
const range& a_range) :constructor, with element width and range (T = int or bit only)

attr<T>& operator[] (const std::size t idx) :access to aspecific element

std::size t size() :getsize of array
detail::AlgebExpr operator[] (const detail::AlgebExpré& idx) :constrain an element
detail::AlgebExpr sum() :constrain sum of array (T = int or bit only)

Syntax 29—C++: Arrays of non-random attributes

Copyright © 2021 Accellera. All rights reserved.
79

Portable Test and Stimulus Standard 2.0 — April 2021

pss::rand_attr_vec

Defined in pss/rand_attr.h (see C.40).

template <class T> using vec = std::vector <T>;
template <class T> using rand attr vec = rand attr< vec <T> >;

Declare array of random attributes.
Member functions

rand attr vec(const scope& name, const std::size t count) :constructor

rand attr vec(const scope& name, const std::size t count, const widths&
a_width) :constructor, with element width (T = int or bit only)

rand attr vec(const scope& name, const std::size t count, const rangeé&
a_range) : constructor, with element range (T = int or bit only)

rand attr vec(const scope& name, const std::size t count, const widths&

a width, const range& a_range) :constructor, with element width and range (T = int or bit only)
rand attr<T>& operator[] (const std::size t idx) :access to a specific element
std::size t size () :getsize of array
detail::AlgebExpr operator[] (const detail::AlgebExpré& idx) :constrain an element
detail::AlgebExpr sum() :constrain sum of array (T = int or bit only)

Syntax 30—C++: Arrays of random attributes

NOTE—PSS/C++ does not support array initialization or array methods except size () and sum().

8.8.2.4 Examples

Examples of fixed-size array declarations are shown in Example 17 and Example 18.

int fixed sized arr [16]; // array of 16 signed integers
array<bit[7:0],256> byte arr; // array of 256 bytes
array<route, 8> east_routes; // array of 8 route structs

Example 17—DSL: Fixed-size arrays

In Example 17, individual elements of the east routes array are accessed using the index operator [],
i.e, east routes[0],east routes[1l],....

// array of 16 signed integers

attr vec <int> fixed sized arr {"fixed size arr", 16};

// array of 256 bytes

attr vec <bit> byte arr {"byte arr", 256, width(7,0)};
// array of 8 route structs

attr vec <route> east routes {"east_routes", 8};

Example 18—C++: Fixed-size arrays

In C++, individual elements of the array are accessed using the index operator [], as in DSL.

Copyright © 2021 Accellera. All rights reserved.
80

Portable Test and Stimulus Standard 2.0 — April 2021

The following example shows use of array operators and methods. In this example, action type A is traversed
six times, once for each element in foo arr, and once more since foo _arr [0] is greater than 3.

component pss_ top {
array<bit([15:0],5> foo arr;
set <bit[15:0]> foo_ set;

exec init up {

foo arr = {1, 2, 3, 4, 4}; // Array initialization assignment
foo_arr[0] = 5; // Use of [] to select an array element
foo _set = foo_arr.to _set(); // Use of to_set() method

}

action A{ rand bit[15:0] x; }
action B{}
action C{}

action traverse array a {
// foo arr has 5 elements and foo set has 4
rand int in [1..] vy;
constraint y < comp.foo_arr.size(); // Use of size() method in constraint
activity {
foreach (elem: comp.foo arr) // "foreach" used on an array

do A with { x == elem; };

if (comp.foo arr([0] > 3)

do A;

else if (4 in comp.foo arr) // Use of "in" operator
do B;

else if (comp.foo arr.size() < 4) // Use of size() method
do C;

Example 19—DSL: Array operators and methods

8.8.2.5 Array properties

Arrays provide the properties size and sum, which may be used in expressions. These properties are
deprecated and have matching methods that should be used instead. They are used as follows:
int datal4];

data.size ... // same as data.size/()
data.sum ... // same as data.sum()
8.8.3 Lists

The list collection type is used to declare a variable-sized ordered list of elements. Using an index, an
element in the list can be assigned or used in an expression. A list with N elements, is ordered, with the first
element accessed using 0 as an index value with the [] operator, and the last element accessed using N-1 as
an index value.

Copyright © 2021 Accellera. All rights reserved.
81

Portable Test and Stimulus Standard 2.0 — April 2021

A list is initialized as an empty collection unless the declaration contains an initialization assignment. A list
that is empty is as if it was assigned an empty aggregate literal ({}). List elements can be added or removed
in exec blocks; therefore the size of a list is not fixed like an array.

A list declaration consists of the keyword list, followed by the data type of the list elements between angle
brackets, followed by the name(s) of the list(s). Lists are non-randomizable.

struct my s {
list<int> my list;

}

Example 20—DSL: Declaring a list in a struct

8.8.3.1 List operators

The following operators are defined for lists:

Index operator |]

Used to access a specific element of a list, given an index into the list. The index shall be an integral value.
See 9.6.2 for more information on the index operator.

Assignment operator =

Creates a copy of the list-type expression on the RHS and assigns it to the list on the LHS. See 9.3 for more
information on the assignment operator.

Equality operator ==

Evaluates to frue if the two lists are the same size and all elements with corresponding indexes are equal.
Two lists of different element types are incomparable. See 9.5.3 for more information on the equality
operator.

Inequality operator =

Evaluates to true if the two lists are not the same size or not all elements with corresponding indexes are
equal. Two lists of different element types are incomparable. See 9.5.3 for more information on the
inequality operator.

Set membership operator in

The set membership operator can be applied to a list to check whether a specific element is currently in the
list. It evaluates to true if the element specified on the left of the operator exists in the list collection on the
right of the operator. The type of the element shall be the same as the list’s element data type. See 9.5.9 for
more information on the set membership operator.

foreach statement

The foreach statement can be applied to a list to iterate over the list elements within an activity, a constraint
or native exec code. See 13.4.3, 17.1.7, and 22.7.8, respectively, for more information on the foreach
statements in these contexts.

Copyright © 2021 Accellera. All rights reserved.
82

Portable Test and Stimulus Standard 2.0 — April 2021

8.8.3.2 List methods

The following methods are defined for lists:
function int size();

Returns the number of elements in the list.
function void clear();

Removes all elements from the list.
function data_type delete(int index);

Removes an element at the specified index of type integer and returns the element value. The return value
data type is the same as the data type of the list elements. If the index is out of bounds, the operation is
illegal.

function void insert(int index, data_type element);

Adds an element to the list at the specified index of type integer. If the index is equal to the size of the list,
insert is equivalent to push_back(). If the index is less than the size of the list, then elements at and beyond
the index are moved by one. If the index is greater than the size of the list, the operation is illegal. The
inserted element’s data type shall be the same as the data type of the list elements.

function data_type pop_front();

Removes the first element of the list and returns the element value. This is equivalent to delete(0).
function void push_front(data_type element);

Inserts an element at the beginning of the list. This is equivalent to insert(0, element).

function data_type pop_back();

Removes the last element of the list and returns the element value. This is equivalent to delete(size()-1).
function void push_back(data_type element);

Appends an element to the end of the list. This is equivalent to insert(size(), element).

function set<data_type> to_set();

Returns a set containing the elements of the list. Each element value will appear once. The set’s element
data type is the same as the data type of the list elements. The set is unordered.

Copyright © 2021 Accellera. All rights reserved.
83

Portable Test and Stimulus Standard 2.0 — April 2021

8.8.3.3 Examples

The following example shows use of list operators and methods. In this example, an action of type B will be
traversed six times. There are six elements in foo 1ist3, foo 1ist2[0] is 1 and 4 is in
comp.foo listl. Action A and action C are never traversed.

component pss_ top {
list<bit[15:0]> foo listl, foo list2;

exec init up {
foo 1listl = {1, 2, 3, 4}; // List initialization with aggregate literal
foo list2.push back(l); // List initialization with push back
foo list2.push back(4);

}

action A{}
action B{}
action C{}

action traverse list a {
list <bit[15:0]> foo 1list3;
bit[15:0] deleted;

exec pre solve {
foo list3 = pss top.foo listl; // foo list3 = {1,

—

~
~

2, 3, 4
foo list3.push front(0); // foo 1list3 = {0, 1, 2, 3, 4}
foo list3.push back(5); // foo 1list3 = (0, 1, 2, 3, 4, 5}
foo list3.insert (0, 1); // foo 1list3 = {1, 0, 1, 2, 3, 4, 5}
foo 1ist3[0] = 6; // foo 1list3 = {6, 0, 1, 2, 3, 4, 5}
deleted = foo list3.delete(0); // foo 1list3 = {0, 1, 2, 3, 4, 5}
}
activity {
if (comp.foo listl == comp.foo list2) // Use of == operator on list
do A;
else foreach (e: foo 1list3) // Use of "foreach" on list
if (comp.foo 1ist2[0] > 3) // Use of [] operator on list
do A;
else if (4 in comp.foo listl) // Use of "in" operator on list
do B;
else
do C;

exec post solve ({
foo list3.clear(); // foo_ list3 = {}
}

Example 21—DSL.: List operators and methods

Copyright © 2021 Accellera. All rights reserved.
84

Portable Test and Stimulus Standard 2.0 — April 2021

8.8.4 Maps

The map collection type is used to declare a variable-sized associative array that associates a key with an
element (or value). The keys serve as indexes into the map collection. Using a key, an element in the map
can be assigned or used in an expression. A map is unordered.

A map is initialized as an empty collection unless the declaration contains an initialization assignment. A
map that is empty is as if it was assigned an empty aggregate literal ({}). Map elements can be added or re-
moved within exec blocks.

A map declaration consists of the keyword map, followed by the data type of the map keys and the data type
of map elements, between angle brackets, followed by the name(s) of the map(s). Both keys and element
values may be of any plain-data type. Maps are non-randomizable.

struct my s {
map<int, string> my map;

}

Example 22—DSL: Declaring a map in a struct

8.8.4.1 Map operators

The following operators are defined for maps:
Index operator |]

Used to access a specific element of a map, given a key of the specified data type. When used on the LHS in
an assignment, the index operator sets the element value associated with the specified key. If the key already
exists, the current value associated with the key is replaced with the value of the expression on the RHS. If
the key does not exist, then a new key is added to the map collection and the value of the expression on the
RHS is assigned to the new key’s associated map entry. Use of a key that does not exist in the map to
reference an element in the map is illegal. See 9.6.2 for more information on the index operator.

Assignment operator =

Creates a copy of the map-type expression on the RHS and assigns it to the map on the LHS. If the same key
appears more than once in the expression on the RHS, the last value specified is used. See 9.3 for more
information on the assignment operator.

Equality operator ==

Evaluates to frue if the two maps are the same size, have the same set of keys, and all elements with
corresponding keys are equal. Two maps of different key or element types are incomparable. See 9.5.3 for
more information on the equality operator.

Inequality operator =

Evaluates to true if the two maps are not the same size, do not have the same set of keys, or not all elements
with corresponding keys are equal. Two maps of different key or element types are incomparable. See 9.5.3
for more information on the inequality operator.

Copyright © 2021 Accellera. All rights reserved.
85

Portable Test and Stimulus Standard 2.0 — April 2021

foreach statement

The foreach statement can be applied to a map to iterate over the map elements within an activity, a
constraint or native exec code. See 13.4.3, 17.1.7, and 22.7.8, respectively, for more information on the
foreach statements in these contexts.

The set membership operator (in) cannot be applied directly to a map. However, it may be applied to the set
of keys or the list of values produced by the keys() and values() methods, respectively, described below.

8.8.4.2 Map methods

The following methods are defined for maps:
function int size();

Returns the number of elements in the map.
function void clear();

Removes all elements from the map.
function data_type delete(data_type key);

Removes the element associated with the specified key from the map and returns the element value. The
return value data type is the same as the data type of the map elements. The key argument shall have the
same type as specified in the map declaration. If the specified key does not exist in the map, the operation is
illegal.

function void insert(data_type key, data_type value);

Adds the specified key/value pair to the map. If the key currently exists in the map, then the current value is
replaced with the new value. The arguments shall have the same types as specified in the map declaration.

function set<data_type> keys();

Returns a set containing the map keys. The set’s element data type is the same as the data type of the map
keys. Since each key is unique and no order is defined on the keys, the method returns a set collection.

function list<data type> values();

Returns a list containing the map element values. The list’s element data type is the same as the data type of
the map elements. Since element values may not be unique, the method returns a list collection. However,
the order of the list elements is unspecified.

Copyright © 2021 Accellera. All rights reserved.
86

Portable Test and Stimulus Standard 2.0 — April 2021

8.8.4.3 Example

The following example shows use of map operators and methods. In this example, an action of type B will
be traversed four times: foo mapl is not equal to foo map2, foo map3 has four elements,
foo map2["a"] is 1 which is not greater than 3, and "b" exists in foo mapl.

component pss top {
map<string, bit[15:0]> foo mapl, foo map2;
list<bit[15:0]> foo listl;

exec init up {
foo mapl = {"a":1,"b":2,"c":3,"d":4}; // Map initialization
// with key/value literal

foo map2["a"] 1;

foo map2["b"] = 4;

foo listl = foo mapl.values();

foreach (foo map2[i]) foo listl.push back(foo map2[i]);

action A{}
action B{}
action C{}

action traverse map a {
rand int lower size;
map <string, bit[15:0]> foo map3;
set <string> foo_ setl;

exec pre solve ({
foo map3 = pss_top.foo mapl; // foo map3 = {"a":1,"b":2,"c":3,"d":4}
foo map3.insert("z",0); // foo map3 = {"a":1,"b":2,"c":3,"d":4,"z":0}
foo map3.insert ("d",5); // foo map3 = {"a":1,"b":2,"c":3,"d":5,"z":0}
foo map3.delete (“d”); // foo map3 = {"a":1,"b":2,"c":3,"z":0}
foo _setl = foo map3.keys();

}

constraint lower size < comp.foo map3.size() + comp.foo listl.size();
activity {
if (comp.foo mapl == comp.foo map2) // Use of == operator on maps
do A;
else foreach (foo map3.values()[i]) // Use of "foreach" on a map
// converted to a list of values
if (comp.foo map2["a"] > 3) // Usage of operator[] on a map
do A;
else if ("b" in comp.foo mapl.keys()) // Check whether a key
// is in the map
do B;
else
do C;

exec post solve {
foo map3.clear(); // foo map3 = {}
}

Example 23—DSL: Map operators and methods

Copyright © 2021 Accellera. All rights reserved.
87

Portable Test and Stimulus Standard 2.0 — April 2021

8.8.5 Sets

The set collection type is used to declare a variable-sized unordered set of unique elements of plain-data
type. Sets can be created, modified, and queried using the operators and methods described below.

A set is initialized as an empty collection unless the declaration contains an initialization assignment. A set
that is empty is as if it was assigned an empty aggregate literal ({}). Set elements can be added or removed
within exec blocks; therefore the size of a list is not fixed like an array.

A set declaration consists of the keyword set, followed by the data type of the set elements between angle
brackets, followed by the name(s) of the set(s). Sets are non-randomizable.

struct my s {
set<int> my_ set;

}

Example 24—DSL: Declaring a set in a struct

8.8.5.1 Set operators

The following operators are defined for sets:
Assignment operator =

Creates a copy of the set-type expression on the RHS and assigns it to the set on the LHS. The same value
may appear more than once in the expression on the RHS, but it will appear only once in the set. See 9.3 for
more information on the assignment operator.

Equality operator ==

Evaluates to true if the two sets have exactly the same elements. Note that sets are unordered. Two sets of
different element types are incomparable. See 9.5.3 for more information on the equality operator.

Inequality operator =

Evaluates to frue if the two sets do not have exactly the same elements. Two sets of different element types
are incomparable. See 9.5.3 for more information on the inequality operator.

Set membership operator in

The set membership operator can be applied to a set to check whether a specific element is currently within
the set. It evaluates to true if the element specified on the left of the operator exists in the set collection on
the right of the operator. The type of the element shall be the same as the set’s element data type. See 9.5.9
for more information on the set membership operator.

foreach statement

The foreach statement can be applied to a set to iterate over the set elements within an activity, a constraint
or native exec code. When applied to a set, the foreach statement shall specify an iterator variable and shall
not specify an index variable. See 13.4.3, 17.1.7, and 22.7.8, respectively, for more information on the
foreach statements in these contexts.

Copyright © 2021 Accellera. All rights reserved.
88

Portable Test and Stimulus Standard 2.0 — April 2021

8.8.5.2 Set methods

The following methods are defined for sets:
function int size();

Returns the number of elements in the set.
function void clear();

Removes all elements from the set.
function void delete(data_type element);

Removes the specified element from the set. The element argument data type shall be the same as the data
type of the set elements. If the element does not exist in the set, the operation is illegal.

function void insert(data_type element);

Adds the specified element to the set. The inserted element’s data type shall be the same as the data type of
the set elements. If the element already exists in the set, the method shall have no effect.

function list<data_type> to_list();

Returns a list containing the elements of the set in an arbitrary order. The list’s element data type is the same
as the data type of the set elements.

Copyright © 2021 Accellera. All rights reserved.
89

Portable Test and Stimulus Standard 2.0 — April 2021

8.8.5.3 Examples

The following example shows use of set operators and methods. In this example, A is traversed two times
and B is traversed three times: foo setl is not equal to foo set2, there are five elements in
foo_ set3, twoofthe foo set3 elementsare in foo set2,and "b" isin foo_ setl.

component pss_ top {
set <string> foo setl, foo set2;
list<string> foo listl;

exec init up {
foo_setl = {("a","b","c","d"}; // Set initialization with aggregate literal
foo set2.insert("a");
foo set2.insert ("b");
foo listl = foo setl.to list();
foreach (e:foo_set2) foo listl.push back(e);

action A{}
action B{}
action C{rand string character;}

action traverse set a {
rand int lower size;
set <string> foo set3;
list<string> foo list2;

exec pre solve {
foo set3 = pss_top.foo setl;
foo set3.insert("z");
foo set3.insert ("e");
foo set3.delete("d");
foo list2 = foo set3.to list();

constraint lower size < foo set3.size() + comp.foo listl.size();

activity {

if (comp.foo setl == comp.foo set2) // Use == operator on sets
do A;
else foreach (e:foo_set3) // Use "foreach" on set
if (e in comp.foo_ set2) // Use [] operator on set
do A;
else if ("b" in comp.foo setl) // Use "in" operator on set
do B;
else
replicate (j:foo list2.size())
do C with {character == foo list2[j];};

Example 25—DSL: Set operators and methods

Copyright © 2021 Accellera. All rights reserved.
90

Portable Test and Stimulus Standard 2.0 — April 2021

8.9 Reference types

PSS supports a limited form of reference types for actions, components, and flow/resource objects, but does
not support references to plain-data types. References in PSS are similar in their semantics to class variables
in such languages as Java and SystemVerilog. Variables of reference types can be assigned and compared
(see more in 9.3 and 9.5.3).

8.9.1 DSL syntax

reference type ::=ref entity type identifier
entity type identifier ::=
action_type_identifier
| component type identifier
| flow_object type
| resource_object_type
null_ref ::= null

Syntax 31—DSL: ref declaration

The following also apply:

a) The ref modifier can be used in the declaration of local variables, fields of components, function
parameters, and function return values. The ref modifier shall not be used in the declaration of fields
in the scope of actions, flow/resource objects, and structs. Nor shall it be used to declare static con-
stants or the key or element type in collections.

b) Fields and instance functions can be accessed through a reference expression in the same way as
through an instance path, using the dot (°.”) operator.

c) An expression of reference type may evaluate to the special value null, indicating that it does not
reference any entity. It shall be an error to access members of an entity through a null reference. See
also 9.3 and 9.5.3.

d) When not initialized, the default value of a reference variable is null.

Note that PSS supports special reference fields that are automatically resolved as part of the solving process.
They are:

— The context component reference comp (see 10.6)

— Action handles to sub-actions within compound actions (see 13.3.1.1)

— The previous state reference prev (see 14.3.1)
— Input and output reference fields of actions (see 14.4)

— Resource claim reference fields (see 15.2)
8.9.2 Examples

Example 26 demonstrates the use of a reference as a local variable and as a return type of a function. In the
body of action call foo, a reference to A is stored in a local variable, and then used to call function
foo (). In addition, a reference to A is returned from function choose A (), and it is used in turn to call
foo () on the chosen instance of A.

Copyright © 2021 Accellera. All rights reserved.
91

Portable Test and Stimulus Standard 2.0 — April 2021

component A {
function void foo();

}i

component B {
A a arr[5];

}

action call foo {
exec body {
ref A aref
aref.foo();
comp.choose A(123).

i

bi

function ref A choose A(i
return a arr[code % 5];

nt code)

comp.a_arr[3];

foo ()

Example 26—DSL: Use of reference as local variable and function return value

In Example 27, a reference field is declared under component my comp. After the construction of the
component instance tree, the attribute sibling size of c2 is equal to 10, having been assigned in the
init_down block through the sibling reference field. However, the attribute sibling size of cl is
still equal to its default value 0, because for c1, reference field sib11ing was not initialized, and therefore

cl.siblingis equal to null

component my comp {
ref my comp sibling;
int size, sibling size;
exec init down {
if (sibling != null) {
sibling size sibl

}i

component pss_ top {
my comp cl, c2;
exec init down {
cl.size 10;
c2.sibling =

cl;

ing.size;

Example 27—DSL

: Use of reference field and null value

Copyright © 2021 Accellera. All rights reserved.

92

Portable Test and Stimulus Standard 2.0 — April 2021

8.10 User-defined data types

The typedef statement declares a user-defined type name in terms of an existing data type, as shown in
Syntax 32.

8.10.1 DSL syntax

typedef declaration ::= typedef data_type identifier ;

Syntax 32—DSL: User-defined type declaration

8.10.2 C++ syntax
C++ uses the built-in typedef£ construct.
8.10.3 Examples

typedef examples are shown in Example 28 and Example 29.

typedef bit[31:0] uint32 t;
Example 28—DSL: typedef

typedef unsigned int uint32 t;

Example 29—C++: typedef

8.11 Data type conversion

Expressions of types int, bit, bool, or enum in DSL can be changed to another type in this list by using a
cast operator. C++ casting is handled using the existing C++ mechanism.

8.11.1 DSL syntax

Syntax 33 defines the cast operator.

cast_expression ::= (casting_type) expression
casting_type ::=
integer_type
| bool type
| enum_type
| type_identifier

Syntax 33—DSL: cast operation

In a cast_expression, the expression to be cast shall be preceded by the casting data type enclosed in
parentheses. The cast shall return the value of the expression represented as the casting type. A
type_identifier specified as a casting_type shall refer to an integer, boolean, or enumeration type.

Copyright © 2021 Accellera. All rights reserved.
93

Portable Test and Stimulus Standard 2.0 — April 2021

The following also apply:

a)

b)

d)

Any non-zero value cast to a bool type shall evaluate to true. A zero value cast to a bool type shall

evaluate to false. When casting a bool type to another type, false evaluates to 0 and true evaluates to
1.

When casting a value to a bit type, the casting type shall include the width specification of the
resulting bit vector. The expression shall be converted to a bit vector of sufficient width to hold the
value of the expression, and then truncated or left-zero-padded as necessary to match the
casting_type.

When casting a value to a user-defined enum type, the value shall correspond to a valid integral
value for the resulting enum type. When used in a constraint, the resulting domain is the intersection
of the value sets of the two enum types.

All numeric expressions (int and bit types) are type-compatible, so an explicit cast is not required
from one to another.

8.11.2 Examples

Example 30 shows the overlap of possible enum values (from 8.11.1 (¢)) when used in constraints.

enum config modes e {UNKNOWN, MODE A=10, MODE B=20};
enum foo e {A=10, B, C};

action my a {
rand config modes e cfg;
rand foo e foo;
constraint cfg == (config modes e)1ll; // illegal
constraint cfg == (config modes e) foo;
// cfg==MODE A, the only value in the
// numeric domain of both cfg and foo

Example 30—DSL: Overlap of possible enum values

Example 31 shows the casting of al from the align e enum type to a 4-bit vector to pass into the
alloc addr imported function.

package external fn pkg {

enum align e {byte aligned=1, short aligned=2, word aligned=4};
function bit[31:0] alloc_addr(bit[31:0] size, bit[3:0] align);
buffer mem seg s {

rand bit[31:0] size;

bit[31:0] addr;

align e al;

exec post solve {

addr = alloc addr(size, (bit[3:0])al);
}

Example 31—DSL: Casting of variable to a bit vector

Copyright © 2021 Accellera. All rights reserved.
94

Portable Test and Stimulus Standard 2.0 — April 2021

9. Operators and expressions

This section describes the operators and operands available in PSS and how to use them to form expressions.
An expression is a construct that can be evaluated to determine a specific value. Expressions may be
primary expressions, consisting of a single term, or compound expressions, combining operators with sub-

expressions as their operands.

The various types of primary expressions are specified in 9.6.

9.1 DSL syntax

expression ::=
primary
| unary operator primary
| expression binary operator expression
| conditional expression

| in_expression

unary operator :i=-|!|~|&|]||"
binary_operator ::=* | /| Yo |+ |- | <<|>>[==[I=[<[<=|>|>= ||| && [[| " [& [**
assign op n==|+=|-=|<<=|>>=]||=| &=
primary ::=
number

| aggregate literal

| bool literal

| string_literal

| null ref

| paren_expr

| cast_expression

| ref path

| compile has expr

paren_expr ::= (expression)

cast_expression ::= (casting_type) expression

Syntax 34—DSL: Expressions and operators

9.2 Constant expressions

Some constructs require an expression to be a constant expression. The operands of a constant expression
consist of numeric and string literals, aggregate literals with constant values, named constants (e.g., static
const, template parameters), bit-selects and part-selects of named constants, enum items, and calls of pure
functions with constant arguments.

Copyright © 2021 Accellera. All rights reserved.
95

Portable Test and Stimulus Standard 2.0 — April 2021

9.3 Assignment operators
The assignment operators defined by the PSS language are listed in the table below.

Table 6—Assignment operators and data types

Operator token Operator name Operand data types
= Binary assignment operator Any plain-data type or reference type
+= -= Binary arithmetic assignment operators | Numeric
&= |= Binary bitwise assignment operators Numeric
>>= <<= Binary shift assignment operators Numeric

The assignment (=) operator is used in the context of attribute initializers and procedural statements.

The arithmetic assignment (+=, —-=), shift assignment (<<=, >>=), and bitwise assignment (|=, &=)
operators are used in the context of procedural statements. These compound assignment operators are
equivalent to assigning to the left-hand operand the result of applying the leading operator to the left-hand
and right-hand operands. For example, a <<= bisequivalenttoa = a << b.

While these operators may not be used as a part of an expression, they are documented here for consistency.
The type of the right-hand side of an assignment shall be assignment-compatible with the type of the left-
hand side. In an aggregate assignment, assignment is performed element by element. In an assignment of a

fixed-size array, the left-hand and right-hand sides of the assignment shall have the same size.

In assignment of reference types, the right-hand side shall be one of the following:
— A reference expression of the same type as the left-hand side or a derived type of it
— An instance path to a component of the same type as the left-hand side or a derived type of it

— The value null
Following the assignment of a reference, the left-hand side variable shall point to (be an alias to) the same

entity (component, action, flow/resource object) referred to by the right-hand side (or have the value null in
case the right-hand side evaluates to null).

9.4 Expression operators
The expression operators defined by the PSS language are listed in the table below.

Table 7—Expression operators and data types

Operator token Operator name Operand data types Result data type

?: Conditional operator Any plain-data type or Same as operands
reference type
(condition is Boolean)

- Unary arithmetic negation operator Numeric Same as operand
~ Unary bitwise negation operator Numeric Same as operand
! Unary Boolean negation operator Boolean Boolean

Copyright © 2021 Accellera. All rights reserved.
96

Portable Test and Stimulus Standard 2.0 — April 2021

Table 7—Expression operators and data types

Operator token Operator name Operand data types Result data type
& | ~ Unary bitwise reduction operators Numeric 1-bit
+ - * / % ** | Binary arithmetic operators Numeric 1-bit
& | 2 Binary bitwise operators Numeric 1-bit
>> <L Binary shift operators Numeric Same as left operand
&& || Binary Boolean logical operators Boolean Same as operands
< <= > >= Binary relational operators Numeric Boolean
= I= Binary logical equality operators Any plain-data type or Boolean

reference type
cast Data type conversion operator Numeric, Boolean, Casting type
enum
in Binary set membership operator Any plain-data type Boolean
[expression] Index operator Array, list, map Same as element of
collection
[expression] Bit-select operators Numeric Numeric
[expression: Part-select operator Numeric Numeric
expression]

9.4.1 Operator precedence and associativity

Operator precedence and associativity are listed in Table 8. The highest precedence is listed first.

Table 8—Operator precedence and associativity

Operator Associativity Precedence
() [l Left 1 (Highest)
cast Right 2
- ! ~ & | * (unary) 2
* % Left 3
* /0% Left 4
+ - (binary) Left 5
<< >> Left 6
< <= > >= in Left 7
= I= Left 8
& (binary) Left 9
A (binary) Left 10
| (binary) Left 11

Copyright © 2021 Accellera. All rights reserved.

97

Portable Test and Stimulus Standard 2.0 — April 2021

Table 8—Operator precedence and associativity

&& Left 12
I Left 13
?: (conditional operator) Right 14 (Lowest)

Operators shown in the same row in the table shall have the same precedence. Rows are arranged in order of
decreasing precedence for the operators. For example, *, /, and % all have the same precedence, which is
higher than that of the binary + and — operators.

All operators shall associate left to right with the exception of the conditional (? :) and cast operators, which
shall associate right to left. Associativity refers to the order in which the operators having the same
precedence are evaluated. Thus, in the following example, B is added to 2, and then C is subtracted from the
result of A+B.

A+ B -C

When operators differ in precedence, the operators with higher precedence shall associate first. In the
following example, B is divided by C (division has higher precedence than addition), and then the result is
added to A.

A+B/C
Parentheses can be used to change the operator precedence, as shown below.

(A + B) / C // not the same as A + B / C
9.4.2 Using aggregate literals in expressions

Aggregate literals (i.e., value list, map, and structure literals, see 4.8) can be used as expression operands.
For example, aggregate literals can be used to initialize the contents of aggregate types as part of a variable
declaration, in constraint contexts, as foreign language function parameters, and as template-type value
parameters. An aggregate literal may not be the target of an assignment.

When the operands of an assignment or equality operator are a structure aggregate literal and a struct-type
variable, any elements not specified by the literal are given the default values of the data type of the element.
When the operands of an assignment or equality operator are a value list literal and an array, the number of
elements in the aggregate literal must be the same as the number of elements in the array.

In Example 32, a struct type is declared that has four integer fields. A non-random instance of that struct is
created where all field values are explicitly specified. A constraint compares the fields of this struct with an
aggregate literal in which only the first two struct fields are specified explicitly. Because a struct is a fixed-
size data structure, the fields that are not explicitly specified in the aggregate literal are given default values—
in this case 0. Consequently, the constraint holds.

Copyright © 2021 Accellera. All rights reserved.
98

Portable Test and Stimulus Standard 2.0 — April 2021

struct s {
int a, b, ¢, d;

}i

struct t {
s s1 = {.a=1, .b=2, .c=0,.d=0};
constraint sl == {.b=2,.a=1};

Example 32—DSL: Using a structure literal with an equality operator

When an aggregate literal is used in the context of a variable-sized data type, the aggregate literal specifies
both size and content.

In Example 33, a set variable is compared with an aggregate literal using a constraint. The size of the set
variable is three, since there are three unique values in the initializing literal, while the size of the aggregate
literal in the constraint is two. Consequently, the constraint does not hold.

struct t {
set<int> s = {1, 2, 0, 0};
constraint s == {1, 2}; // False: s has 3 elements, but the literal has 2

Example 33—DSL: Using an aggregate literal with a set

Values in aggregate literals may be non-constant expressions. Example 34 shows use of a repeat-loop index
variable and a function call in a value list literal.

function int get val (int idx);
import solve function get val;
struct S {

list<array<int,2>> pair 1;

exec pre solve {
repeat (i : 4) {
array<int,2> pair = {i, get val(i)};
pair 1l.push back(pair);
}

Example 34—DSL: Using non-constant expressions in aggregate literals

9.4.3 Type inference rules

The expected type of an expression shall be inferred according to the rules below. The expected type is used
in the resolution of unqualified enum_item names (see 8.4) and in the interpretation of aggregate literals (see
9.4.2).

— The type of the expression on the left-hand side of an assignment determines the expected type of
the expression on the right-hand side. This includes initialization assignments.

— The type of the formal parameter of a function determines the expected type of the respective actual
parameter expression (see 22.2). This is true also for covergroup instantiations (see 19.2).

Copyright © 2021 Accellera. All rights reserved.
99

Portable Test and Stimulus Standard 2.0 — April 2021

— The return type of a function determines the expected type of the expression in its return statement
(see 22.7.5).

— An expression of a known type on the left-hand side of an equality operator (==, !=) determines the
expected type of the right-hand side (see 9.5.3).

— The expected type of a conditional expression (? :) determines the expected type of the second and
third operands of the expression (see 9.5.8).

— The type of the expression on the left-hand side of a set membership (in) operator determines the
expected type of the expressions in the open range list, or the elements of the collection_expres-
sion, on the right-hand side (see 9.5.9).

— An explicit data type of a coverpoint determines the expected type of the coverpoint expression (see
19.3).

— The type (explicit or implicit) of a coverpoint determines the expected type of its bin values (see
19.3.4).

— In a cast_expression, the specified target type (casting type) determines the expected type of the
expression to be cast (see 8.11).

For the purposes of this section, all numeric types are considered to be a single type, as all numeric
expressions are type-compatible (see 8.11). See more on the evaluation of numeric expressions in 9.7 and
9.8.

In Example 35, contextual typing is required to interpret structure literals. Based on the type of the left
operand of an equality operator, the structure literal on the right-hand side is interpreted differently in two
different constraints within the same action.

component my ip c {
struct my struct { rand int a; };
action my op {
rand my struct s;
}
}

component pss top {
my ip ¢ my ip;
struct your struct { rand int a; };

action test {
rand your struct s;
constraint s == {.a = 2}; // pss_top::your struct literal

my ip c::my op oOp;
constraint op.s == {.a = 3}; // my ip c::my struct literal

activity {
op;
}

Example 35—DSL: Contextual typing in structure literal interpretation

Example 36 shows two cases of unqualified enum item resolution based on contextual typing—an
assignment and a function call. Note that in calling function print num (), whose formal parameter is

Copyright © 2021 Accellera. All rights reserved.
100

Portable Test and Stimulus Standard 2.0 — April 2021

declared with type int, the identifier ORANGE cannot be resolved, because the expected type is an int. The
enum_item must be qualified in this case.

enum color e {RED, GREEN, ORANGE};

function void print color(color e c);
function void print num(int n);

component pss top {
enum fruit e {APPLE, ORANGE};

exec init down ({

color e ¢ = ORANGE; // OK - expected type is color_e
print_color(RED); // OK — same as above
print num((int)ORANGE) ; // Error — 'ORANGE' unresolved -

// no enum type expected here
print num((int)fruit e::ORANGE); // OK - qualified reference

Example 36—DSL: Contextual typing in enum_item resolution

9.4.4 Operator expression short-circuiting
The logical operators (&&, | |) and the conditional operator (? :) shall use short-circuit evaluation. In other
words, operand expressions that are not required to determine the final value of the operation shall not be

evaluated. All other operators shall not use short-circuit evaluation. In other words, all of their operand
expressions are always evaluated.

9.5 Operator descriptions

The following sections describe each of the operator categories. The legal operand types for each operator
are listed in Table 7.

9.5.1 Arithmetic operators
The binary arithmetic operators are given in Table 9.

Table 9—Binary arithmetic operators

atb aplusb

a-b a minus b

a*b a multiplied by b (or a times b)

a/b a divided by b

a%b a modulo b

a**p a to the power of b

Integer division shall truncate the fractional part toward zero. The modulus operator (for example, a % b)
gives the remainder when the first operand is divided by the second, and thus zero when b divides a exactly.

Copyright © 2021 Accellera. All rights reserved.
101

Portable Test and Stimulus Standard 2.0 — April 2021

The result of a modulus operation shall take the sign of the first operand. Division or modulus by zero shall
be considered illegal.

The result of the power operator is unspecified if the first operand is zero and the second operand is
negative.

Table 10—Power operator rules

oplis<-1 oplis -1 oplis0 oplis1 oplis>1

op2is odd —> -1

3 it sk sk

op2 is positive opl ** op2 op2 is even —> 1 0 1 opl ** op2
op2 is zero 1 1 1 1 1
op2 is negative 0 opZ is odd => =1 undefined 1 0

op2iseven —> 1

NOTE—The power operator is not supported directly in PSS/C++. Instead, the function pow (a,b) implements a to
the power of b.

The unary arithmetic negation operator (-) shall take precedence over the binary operators.

9.5.1.1 Arithmetic expressions with unsigned and signed types

bit-type variables are unsigned, while int-type variables are signed.

A value assigned to an unsigned variable shall be treated as an unsigned value. A value assigned to a signed
variable shall be treated as signed. Signed values shall use two’s-complement representation. Conversions
between signed and unsigned values shall keep the same bit representation. Only the bit interpretation
changes.

9.5.2 Relational operators

Table 11 lists and defines the relational operators. Relational operators may be applied only to numeric
operands.

Table 11—Relational operators

a<b aless than b

a>b a greater than b
a<=b a less than or equal to b
a>=b a greater than or equal to b

An expression using these relational operators shall yield the Boolean value frue if the specified relation
holds, or the Boolean value false if the specified relation does not hold.

When one or both operands of a relational expression are unsigned, the expression shall be interpreted as a
comparison between unsigned values. If the operands are of unequal bit lengths, the smaller operand shall be
zero-extended to the size of the larger operand.

Copyright © 2021 Accellera. All rights reserved.
102

Portable Test and Stimulus Standard 2.0 — April 2021

When both operands are signed, the expression shall be interpreted as a comparison between signed values.
If the operands are of unequal bit lengths, the smaller operand shall be sign-extended to the size of the larger
operand.

All the relational operators have the same precedence, and have lower precedence than arithmetic operators.

9.5.3 Equality operators

The equality operators rank lower in precedence than the relational operators. Table 12 defines the equality
operators.

Table 12—Equality operators

a== aequaltob

al=b anotequal tob

Both equality operators have the same precedence. When the operands are numeric, these operators compare
operands bit for bit. As with the relational operators, the result shall be false if the comparison fails and true
if it succeeds.

When one or both operands are unsigned, the expression shall be interpreted as a comparison between
unsigned values. If the operands are of unequal bit lengths, the smaller operand shall be zero-extended to the
size of the larger operand.

When both operands are signed, the expression shall be interpreted as a comparison between signed values.
If the operands are of unequal bit lengths, the smaller operand shall be sign-extended to the size of the larger
operand.

When the operands of an equality operator are of string type, both the sizes and the values of the string
operands are compared.

Aggregate data (structs and collections) may be compared using equality operators. When the equality
operators are applied to aggregate data, both operands shall be of the same type. Aggregate operands are
compared element-by-element to assess equality.

The following rules apply to comparison of collections:

— It shall be illegal to compare two fixed-size arrays of different sizes. Variable-sized collections of
the same type may be compared, but they shall be considered not equal if they have different sizes.

— Two fixed-size arrays are considered equal if they have the same elements in the same order.

— Two lists are considered equal if they have the same size and they have the same elements in the
same order.

— Two maps are considered equal if they have the same size and the same key-value pairs, regardless
of order (maps are unordered).

— Two sets are considered equal if they have the same size and the same elements, regardless of order
(sets are unordered).

The right-hand side of an equality operator may be an aggregate literal of the same type as the left-hand side.
The left-hand side of an equality operator may not be an aggregate literal. See more details about collections

in 8.8 and about aggregate literals in 4.8 and 9.4.2.

References can be compared with equality operators. The operands may be one of the following:

Copyright © 2021 Accellera. All rights reserved.
103

Portable Test and Stimulus Standard 2.0 — April 2021

— Two expressions of the same reference type, or one expression of a reference to a derived type of the
other

— One expression of a component reference type, and the other an instance path to a component of the
same type, or a derived type of it

— An expression of a reference type and the value null

The expression evaluates to true if both operands refer to the same entity (component, action, flow/resource
object) or if both evaluate to null. Otherwise it evaluates to false. Note that these rules apply to variables
declared with the ref modifier, the built-in comp reference, and other reference fields (see 8.9).

9.5.4 Logical operators

The binary operators logical AND (&&) and logical OR (| |) are logical connective operators and have a
Boolean result. The precedence of && is greater than that of | |, and both have a lower precedence than the
relational and equality operators.

The unary logical negation operator (!) converts a true operand to false and a false operand to frue.

In procedural contexts, the && and | | operators shall use short-circuit evaluation as follows:
— The first operand expression shall always be evaluated.
— For &g, if the first operand evaluates to false, then the second operand shall not be evaluated.

— For | |, if the first operand evaluates to true, then the second operand shall not be evaluated.
9.5.5 Bitwise operators
The bitwise operators perform bitwise manipulations on the operands. Specifically, the binary bitwise
operators combine a bit in one operand with the corresponding bit in the other operand to calculate one bit

for the result. The following truth tables show the result for each operator and input operands.

Table 13—Bitwise binary AND operator

& 0|1
0 010
1 01

Table 14—Bitwise binary OR operator

| 01
0 011
1 1] 1

Copyright © 2021 Accellera. All rights reserved.
104

Portable Test and Stimulus Standard 2.0 — April 2021

Table 15—Bitwise binary XOR operator

" 0|1
0 01
1 110

The bitwise unary negation operator (~) negates each bit of a single operand.

Table 16—Bitwise unary negation operator

These operators may be applied only to numeric operands.

9.5.6 Reduction operators

The unary reduction operators perform bitwise operations on a single operand to produce a single-bit result.
The unary AND operator (&) returns 1’ b1 if all the bits of the operand are 1, and returns 1’ b0 otherwise.
The unary OR operator (|) returns 1’ b1l if any bit of the operand is 1, and returns 1’ b0 otherwise. The
unary XOR operator (*) returns 1’ b1l if an odd number of bits of the operand are 1, and returns 1’ b0
otherwise. These operators are implemented in PSS/C++ using the and reduce (operand),
or_reduce (operand), and xor_reduce (operand) functions, respectively.

These operators (and functions in PSS/C++) may be applied only to numeric operands.

The table below shows the results of applying the three reduction operators to four example bit patterns.

Table 17—Results of unary reduction operations

Operand | & | " Comments
4'b0000 0 0 No bits set
4'b1111 1 1 All bits set

o | O | o

4'b0110 0 1 Even number of bits set

4'b1000 0 1 1 Odd number of bits set

Copyright © 2021 Accellera. All rights reserved.
105

Portable Test and Stimulus Standard 2.0 — April 2021

9.5.7 Shift operators

PSS provides two bitwise shift operators: shift-left (<<) and shift-right (>>). The left shift operator shifts
the left operand to the left by the number of bit positions given by the right operand. The vacated bit
positions shall be filled with zeros. The right shift operator shifts the left operand to the right by the number
of bit positions given by the right operand. If the left operand is unsigned or if the left operand has a non-
negative value, the vacated bit positions shall be filled with zeros. If the left operand is signed and has a
negative value, the vacated bit positions shall be filled with ones. The right operand shall be a non-negative
number. These operators may be applied only to numeric operands.

9.5.8 Conditional operator
The conditional operator (? :) is right-associative and is composed of three operands separated by two

operators as shown in Syntax 35. The first operand (the cond predicate) shall be of Boolean type. The
second and third operands shall be of the same type, and may be of any plain-data or reference type.

conditional expression ::= cond predicate ? expression : expression

cond_predicate ::= expression

Syntax 35—DSL: Conditional operator

If cond predicate is true, then the operator evaluates to the first expression without evaluating the second
expression. If false, then the operator evaluates to the second expression without evaluating the first
expression.

NOTE—The conditional operator is not supported in PSS/C++.

9.5.9 Set membership operator

PSS supports the set membership operator in, as applied to value sets and collection data types. Syntax 36
and Syntax 37 show the syntax for the set membership operator.

9.5.9.1 DSL syntax

in_expression ::=
expression in [open_range list |
| expression in collection_expression
open_range list ::= open_range value { , open_range value }
open_range value ::= expression [.. expression |

collection_expression ::= expression

Syntax 36—DSL: Set membership operator

The set membership operator returns true if the value of the expression on the left-hand side of the in
operator is found in the open_range_list or collection_expression on the right-hand side of the operator, and
false otherwise.

The expression on the left-hand side shall have a self-determined type; in particular, the left-hand side shall
not be an unqualified enum_item (see 8.4) or an aggregate literal (see 4.8). The elements of the right-hand
side of the in operator shall have a type compatible with the expression on the left-hand side.

Copyright © 2021 Accellera. All rights reserved.
106

Portable Test and Stimulus Standard 2.0 — April 2021

If the expression on the left-hand side is of a scalar type, the right-hand side may be an open_range list or a
collection_expression. If the expression on the left-hand side is of a collection type, the right-hand side shall
be a collection_expression.

An open_range_list on the right-hand side of the in operator shall be a comma-separated list of scalar value
expressions or ranges. When specifying a range, the expressions shall be of a numeric or enumeration type.
If the left-hand bound of the range is greater than the right-hand bound of the range, the range is considered
empty. Values can be repeated; therefore, values and value ranges can overlap. The evaluation order of the
expressions and ranges within the open_range_list is nondeterministic.

A collection_expression on the right-hand side of the in operator shall evaluate to an array, list, or set type
that contains elements whose type is compatible with the type of the expression on the left-hand side. For
example, the collection_expression may be a value list_literal or a hierarchical reference to a set.

9.5.9.2 C++ syntax

The corresponding C++ syntax for Syntax 36 is shown in Syntax 37.

pss::in
Defined in pss/in.h (see C.33).
template <class T> class in;
Set membership.
Member functions
template <class T> in(const attr<T>& a var, const range& a range)
attribute constructor for bit and int

template <class T> in(const rand attr<T>& a var, const range& a_ range)
random attribute constructor for bit and int

Syntax 37—C++: Set membership operator

NOTE—PSS/C++ only supports the open_range_list use of the set membership operator. Since PSS/C++ does not
support collection types, the “in collection _expression” form is not supported.

9.5.9.3 Examples

Example 37 and Example 38 constrain the addr attribute field to the range 0x0000 to OXFFFF.

constraint addr c {
addr in [0x0000..0xFFFF];
}

Example 37—DSL: Value range constraint

Copyright © 2021 Accellera. All rights reserved.
107

Portable Test and Stimulus Standard 2.0 — April 2021

constraint addr c¢ {"addr c",
in (addr, range (0x0000, OxXFFFF))
b

Example 38—C++: Value range constraint

In the example below, v is constrained to be in the combined value set of values and the values specified
directly in the open range list 1, 2. In other words, the value of v willbein [1,2, 3,4, 5]. The variable
values of type list may not be referenced in an open_range_list.

struct s {
list<int> values = {3, 4, 5};
rand int v;
constraint v in [1,2] || v in values;

Example 39—DSL: Set membership in collection

In the example below, v is constrained to be in the range 1, 2, and between a and b. The range a . . b may
overlap with the values 1 and 2.

struct s {
rand int v, a, b;
constraint a < b;
constraint v in [1,2,a..b];

Example 40—DSL: Set membership in variable range

9.6 Primary expressions
There are several types of primary expressions (or simple operands).

The simplest type of primary expression is a reference (simple or hierarchical) to a variable, constant, or
template parameter.

In order to select a single bit of a numeric variable or numeric named constant (e.g., static const or template
parameter), a bit-select shall be used. In order to select a bit range of a numeric variable or numeric named

constant, a part-select shall be used.

A collection variable of plain-data type can be referenced as a primary expression. In order to select an
element within a collection, an index operator shall be used.

A struct variable can be referenced as a primary expression.
A function call is a primary expression.

There are additional types of primary expressions. Formally, an expression is a primary expression if it is a
primary as defined in B.17 and unparenthesized.

Copyright © 2021 Accellera. All rights reserved.
108

Portable Test and Stimulus Standard 2.0 — April 2021

9.6.1 Bit-selects and part-selects

Bit-selects select a particular bit from a named numeric variable or constant using the syntax
identifier | expression |

The index may be any integer expression and may be non-constant.

Part-selects select a fixed range of contiguous bits using the syntax
identifier [constant expression : constant expression |

The value of the first constant expression shall be greater than or equal to the value of the second
constant_expression.

Bit-selects and part-selects may be used as operands of other operators and as targets of assignments. It shall
be illegal for a bit-select or a part-select to access an out-of-bounds bit index.

NOTE—PSS/C++ supports bit-selects on scalar fields, but does not support part-selects.

9.6.2 Selecting an element from a collection (indexing)

The index operator [] is applied to an array, list, or map collection to select a single element. In the case of
an array or a list, the index shall be an integer expression whose value is between 0 and the size of the
array/list - 1. In the case of a map, the index shall be of the same type as that of the key in the map
declaration.

An indexed collection may be used as an operand of other operators and as a target of assignments.

In the case of an array or a list, it shall be illegal to access an out-of-bounds index. In the case of a map, it
shall be illegal to read an element whose key does not appear in the map. An assignment to a map element
whose key does not currently appear in the map shall add that key and value pair to the map.

9.7 Bit sizes for numeric expressions

The size, in bits, of a numeric expression is determined by the operands involved in the expression and the
context in which the expression appears. Casting can be used to set the size context of an intermediate value
(see 8.11).

9.7.1 Rules for expression bit sizes

A self-determined expression is one where the size of the expression is solely determined by the expression
itself. A context-determined expression is one where the size of the expression is determined both by the
expression itself and by the fact that it is part of another expression. For example, the size of the right-hand
expression of an assignment depends on itself and the size of the left-hand side.

Copyright © 2021 Accellera. All rights reserved.
109

Portable Test and Stimulus Standard 2.0 — April 2021

Table 18 shows how the form of an expression determines the sizes of the results of the expression. In
Table 18, i, j, and k represent operands of an expression, and L (i) represents the size of the operand
represented by i.

Table 18—Bit sizes resulting from self-determined expressions

Expression Bit size Comments
Unsized constant number At least 32
Sized constant number As specified
i op j, where op is: max(L(1),L(j))
+ - * / % & | *
op i,whereopis: + - ~ L)
op i,whercopis: & | 1
i op j,whereopis: >> << ** L() j is self-determined
i?3j:k max(L(j),L(k)) i must be Boolean
cast, where casting_type is numeric L(casting_type)

9.8 Evaluation rules for numeric expressions

9.8.1 Rules for expression signedness

The following apply when determining the signedness of an expression:

a)
b)
¢)

d)

2
h)

Expression signedness depends only on the operands. In an assignment, the signedness does not
depend on the left-hand side.

Unsized unbased decimal and octal numbers are signed. Unsized unbased hexadecimal numbers are
unsighed.

Based numbers are unsigned, except when they are designated as signed with the 's notation (e.g.,
4'sd12).

Bit-select results are unsigned, regardless of the operands.

Part-select results are unsigned, regardless of the operands, even if the part-select specifies the entire
width.

The signedness and size of a self-determined operand are determined by the operand itself, indepen-
dent of the remainder of the expression.

If any operand of an expression is unsigned, the result is unsigned regardless of the operators.

If all operands of an expression are signed, the result is signed regardless of the operators, unless
specified otherwise.

Copyright © 2021 Accellera. All rights reserved.
110

Portable Test and Stimulus Standard 2.0 — April 2021

9.8.2 Steps for evaluating a numeric expression

The following are the steps for evaluating a numeric expression:
a) Determine the expression size based on the expression size rules (see 9.7.1).
b) Determine the signedness of the expression using the rules described above.

¢) Propagate the signedness and size of the expression to the context-determined operands of the
expression. Context-determined operands of an operator shall have the same signedness and size as
the result of the operator.

d) When propagation reaches a simple operand (see 9.6), that operand shall be converted to the propa-
gated signedness and size. If the operand must be size-extended, it shall be sign-extended if the
propagated type is signed and zero-extended if the propagated type is unsigned.

9.8.3 Steps for evaluating an assignment

The following are the steps for evaluating an assignment when the operands are of numeric type:

a) Determine the size of the right-hand side of the assignment using the size determination rules
described in 9.7.1.

b) If required, extend the size of the right-hand side, using sign extension if the type of the right-hand
side is signed and zero-extension if the type of the right-hand side is unsigned.

Copyright © 2021 Accellera. All rights reserved.
111

Portable Test and Stimulus Standard 2.0 — April 2021

10. Components

Components serve as a mechanism to encapsulate and reuse elements of functionality in a portable stimulus
model. Typically, a model is broken down into parts that correspond to roles played by different actors
during test execution. Components often align with certain structural elements of the system and execution
environment, such as hardware engines, software packages, or testbench agents.

Components are structural entities, defined per type and instantiated under other components (see Syntax 38,
Syntax 39 and Syntax 40). Component instances constitute a hierarchy (tree structure), beginning with the
top or root component, called pss_top by default, which is implicitly instantiated. Each component
instance has a unique hierarchical path name, and may also contain data attributes, but not constraints.
Components may also encapsulate function declarations (see 22.2.1) and imported class instances (see
22.4.2). In addition, components may be derived from other components via inheritance, or a component
may be extended to add elements to the component type (see Clause 20).

10.1 DSL syntax

component_declaration ::= [pure | component component_identifier [template_param_decl list]
[component_super_spec] { { component body item } }

component_super_spec ::=: type_identifier
component_body _item ::=

override declaration

| component_data_declaration

| component_pool_declaration

| action_declaration

| abstract_action_declaration

| object bind stmt

| exec_block

| struct_declaration

| enum_declaration

| covergroup declaration

| function_decl

| import_class_decl

| procedural function

| import_function

| target_template function

| export_action

| typedef declaration

| import_stmt

| extend_stmt

| compile_assert stmt

| attr_group

| component_body compile if

| stmt_terminator

Syntax 38—DSL: component declaration

Copyright © 2021 Accellera. All rights reserved.
112

Portable Test and Stimulus Standard 2.0 — April 2021

10.2 C++ syntax

The corresponding C++ syntax for Syntax 38 is shown in Syntax 39 and Syntax 40.

Components are declared using the component class (see Syntax 39).

pss::component

Defined in pss/component.h (see C.11).
class component;

Base class for declaring a component.

Member functions

component (const scopeé& name) :constructor

virtual void init down () :in-line exec init down block
virtual void init up () :in-line exec init_up block
virtual void init () :in-line exec init block

Syntax 39—C++; component declaration

Components are instantiated using the comp_inst<>or comp_inst_vec<> class (see Syntax 40).

pss::comp_inst

Defined in pss/comp_inst.h (see C.10).
template <class T> class comp_inst;

Instantiate a component.

Member functions

comp_inst (const scope& name) :constructor
T* operator-> () :access fields of component instance
T& operator* () :access fields of component instance

pss: :comp_inst_vec
Defined in pss/comp_inst.h (see C.10).
template <class T> class comp_inst vec;

Instantiate an array of components.

Member functions
comp_inst<T>& operator[] (const std::size t index) :accesselement of component array
std::size t size () :returns number of components in array

Syntax 40—C++: component instantiation

Copyright © 2021 Accellera. All rights reserved.
113

Portable Test and Stimulus Standard 2.0 — April 2021

10.3 Examples

For examples of how to declare a component, see Example 41 and Example 42.

component uart ¢ { ... };

Example 41—DSL: Component

The corresponding C++ example for Example 41 is shown in Example 42.

class uart c : public component { ... };

Example 42—C++: Component

10.4 Components as namespaces

Component types serve as namespaces for their nested types, i.e., action and struct types defined under
them. Actions, but not structs, may be thought of as non-static inner classes of the component (for example,
as in Java), since each action is associated with a specific component instance. The fully-qualified name of
action and object types is of the form 'package-namespace::component-type::class-

type'.

Within a given component type, references can be left unqualified. However, referencing a nested type from
another component requires the component namespace qualification.

For an example of how to use a component as a namespace, see Example 43 and Example 44.

component usb c {
action write {...}
}
component uart c {
action write {...}
}
component pss_top {
uart c sl;
usb _c s2;
action entry {
uart c::write wr; //refers to the write action in uart c

Example 43—DSL: Namespace

Copyright © 2021 Accellera. All rights reserved.
114

Portable Test and Stimulus Standard 2.0 — April 2021

The corresponding C++ example for Example 43 is shown in Example 44.

class usb_c¢ : public component ({
class write : public action {...};
type decl<write> write decl;

b

class uart c : public component {
class write : public action {...};
type decl<write> write decl;

b

class pss_top : public component {
comp_inst<uart c> sl{"sl1l"};
comp_inst<usb c> s2{"s2"};
class entry : public action {
action handle<uart c::write> wr{"wr"};

}i
type decl<entry> entry decl;

Example 44—C++: Namespace

In Example 45 below, a component C1 is declared in a package. That component is instantiated in
component pss_top, and an action within component C1 is traversed in action pss_top: :entry.In
the traversal of action P: : C1: : A, the qualified name elements are the following:

— package-namespace: P
— component-type: C1
— class-type: A

package P {
component C1l {
action A {}

component pss_ top {
P::Cl cl;

action entry {
activity {
do P::Cl::A;

Example 45—DSL: Component declared in package

Copyright © 2021 Accellera. All rights reserved.
115

Portable Test and Stimulus Standard 2.0 — April 2021

10.5 Component instantiation

Components are instantiated under other components as their fields, much like data fields of structs, and
may be arrays thereof.

10.5.1 Semantics

a)

b)

¢)

d)

e)

Component fields are non-random; therefore, the rand modifier shall not be used. Component data
fields represent configuration data that is accessed by actions declared in the component. To avoid
infinite component instantiation recursion, a component type and all template specializations thereof
shall not be instantiated under its own sub-tree.

In any model, the component instance tree has a predefined root component, called pss_top by
default, but this may be user-defined. There can only be one root component in any valid scenario.

Other components or actions are instantiated (directly or indirectly) under the root component. See
also Example 46 and Example 47.

Plain-data fields may be initialized using a constant expression in their declaration. Data fields may
also be initialized via an exec init_down or init_up block (see 22.1.3), which overrides the value set
by an initialization assignment. The component tree is elaborated to instantiate each component and
then the exec init_down and init_up blocks are evaluated hierarchically. See also Example 297,
Example 298, and Example 299 in 22.1.4.

Component data fields are considered immutable once construction of the component tree is com-
plete. Actions can read the value of these fields, but cannot modify their value. Component data
fields are accessed from actions relative to the comp field, which is a handle to the component con-
text in which the action is executing. See also Example 300 and Example 301 (and 22.1).

10.5.2 Examples

Example 46 and Example 47 depict a component tree definition. In total, there is one instance of
multimedia_ ss_c (instantiated in pss_top), four instances of codec_c (from the array declared in
multimedia ss_c), and eight instances of vid pipe c (two in each element of the codec_c array).

component vid pipe ¢ { ... };

component codec c {
vid pipe ¢ pipeA, pipeB;
action decode { ... };

b

component multimedia ss c {
codec _c codecs([4];
bi

component pss top {
multimedia ss ¢ multimedia ss;

b

Example 46—DSL: Component instantiation

Copyright © 2021 Accellera. All rights reserved.
116

Portable Test and Stimulus Standard 2.0 — April 2021

class vid pipe c : public component { ... };

class codec _c¢ : public component {...
comp_inst<vid pipe c> pipeA{"pipeA"}, pipeB{"pipeB"};

class decode : public action { ... };
type decl<decode> decode decl;
}i

class multimedia ss c : public component ({
comp inst vec<codec c> codecs{ "codecs", 4};

i

class pss_top : public component {
comp_inst<multimedia ss c¢> multimedia ss{"multimedia ss"};

b

Example 47—C++: Component instantiation

10.6 Component references

Each action instance is associated with a specific component instance of its containing component type, the
component-type scope where the action is defined. The component instance is the “actor” or “agent” that
performs the action. Only actions defined in the scope of instantiated components can legally participate in a
scenario.

The component instance with which an action is associated is referenced via the built-in field comp. The
value of the comp field can be used for comparisons of references (see 9.5.3). Unlike user-defined reference
variables, the comp field is assigned automatically as part of the solving process (see 17.4.4) and may not be
assigned by the user. The static type of the comp field is the ref type of the action’s context component.
Consequently, attributes and sub-components of the containing component may be referenced via the comp
field using relative paths.

10.6.1 Semantics

A compound action can only instantiate sub-actions that are defined in its containing component or defined
in component types that are instantiated in its containing component's instance sub-tree. In other words,
compound actions cannot instantiate actions that are defined in components outside their context component
hierarchy.

10.6.2 Examples

Example 48 and Example 49 demonstrate the use of the comp reference. The constraint within the decode
action forces the value of the action’s mode bit to be 0 for the codecs [0] instance, while the value of
mode is randomly selected for the other instances. The sub-action type program is available on both sub-
component instances, pipeA and pipeB, but in this case is assigned specifically to pipeA using the comp
reference.

See also 17.1.3.

Copyright © 2021 Accellera. All rights reserved.
117

Portable Test and Stimulus Standard 2.0 — April 2021

component vid pipe ¢ { ... };
component codec c {
vid pipe c pipeA, pipeB;
bit model enable;
action decode {
rand bit mode;
constraint set mode {
comp.model enable==0 -> mode == 0;
}
activity {
do vid pipe c::program with { comp == this.comp.pipeA; };
}
}i
}i
component multimedia ss c {
codec_c codecs([2];
exec init up {
codecs[0] .model enable = 0;
codecs[1l] .model enable = 1;
}
}i

Example 48—DSL: Constraining a comp attribute

class vid pipe c : public component {...};

class codec _c : public component ({
comp_inst<vid pipe c¢> pipeA{"pipeA"}, pipeB{"pipeB"};
attr<bit> model enable {"model enable"};

class decode : public action {
rand attr<modes e> mode {"mode"};
action handle<codec c::decode> codec c decode{"codec c decode"};

action handle<vid pipe c::program> pipe prog a{"pipe prog a"};

activity act {
pipe prog a.with(
pipe prog a->comp () == comp<codec c>()->pipeA
)
}i
}i
type decl<decode> decode decl;
}i

class multimedia ss c : public component ({
comp inst vec<codec c> codecs{ "codecs", 2};
exec e { exec::init up,
codecs[0]->model enable = O,
codecs[1]->model enable 1

i
}i

Example 49—C++: Constraining a comp attribute

Copyright © 2021 Accellera. All rights reserved.
118

Portable Test and Stimulus Standard 2.0 — April 2021

10.7 Pure components

Pure components are restricted types of components that provide PSS implementations with opportunities
for significant optimization of storage and initialization. Pure components are used to encapsulate
realization-level functionality and cannot contain scenario model features. Register structures are one
possible application for pure components (see 24.5).

The following rules apply to pure components, that is, component types declared with the pure modifier:

a) In the scope of a pure component, it shall be an error to declare action types, pool instances, pool-
binding directives, non-static data attributes, instances of non-pure component types, or exec
blocks.

b) A pure component may be instantiated under a non-pure component. However, a non-pure com-
ponent may not be instantiated under a pure component.

¢c) A pure component may not be derived from a non-pure component. However, both a pure compo-
nent and a non-pure component may be derived from a pure component.

An example of the use of pure components is shown in Example 50.

pure component my register {
function bit[32] read();
function void write(bit[32] wval);

}i

pure component my register group {
my register regs[10];
}:

component my ip {
my register group reg groups[100]; // sparsely-used large structure

}i

Example 50—DSL: Pure components

Copyright © 2021 Accellera. All rights reserved.
119

Portable Test and Stimulus Standard 2.0 — April 2021

11. Actions

Actions are a key abstraction unit in PSS. Actions serve to decompose scenarios into elements whose
definitions can be reused in many different contexts. Along with their intrinsic properties, actions also
encapsulate the rules for their interaction with other actions and the ways to combine them in legal
scenarios. Atomic actions may be composed into higher-level actions, and, ultimately, to top-level test
actions, using activities (see Clause 13). The activity of a compound action specifies the intended schedule
of its sub-actions, their object binding, and any constraints. Activities are a partial specification of a
scenario: determining their abstract intent and leaving other details open.

Actions prescribe their possible interactions with other actions indirectly, by using flow (see Clause 14) and
resource (see Clause 15) objects. Flow object references specify the action’s inputs and outputs and
resource object references specify the action’s resource claims.

By declaring a reference to an object, an action determines its relation to other actions that reference the very
same object without presupposing anything specific about them. For example, one action may reference a
data flow object of some type as its input, which another action references as its output. By referencing the
same object, the two actions necessarily agree on its properties without having to know about each other.
Each action may constrain the attributes of the object. In any consistent scenario, all constraints shall hold;
thus, the requirements of both actions are satisfied, as well as any constraints declared in the object itself.

Actions may be atomic, in which case their implementation is supplied via an exec body block (see 22.1.3),
or they may be compound, in which case they contain an activity (see Clause 13) that instantiates and
schedules other actions. A single action can have multiple implementations in different packages, so the
actual implementation of the action is determined by which package is used.

An action is declared using the action keyword and an action_identifier, as shown in Syntax 41. See also
Syntax 42.

Copyright © 2021 Accellera. All rights reserved.
120

Portable Test and Stimulus Standard 2.0 — April 2021

11.1 DSL syntax

action_declaration ::= action action_identifier [template param_decl list] [action super_spec |
{ { action_body item } }

abstract_action_declaration ::= abstract action_declaration
action_super_spec ::=: type_identifier
action_body _item ::=
activity declaration

| override declaration

| constraint declaration

| action_field declaration

| symbol_declaration

| covergroup declaration

| exec_block stmt

| activity scheduling_constraint

| attr_group

| compile assert stmt

| covergroup instantiation

| action_body compile_if

| stmt_terminator
action_field declaration ::=

attr_field
| activity data field
| action_handle declaration

| object ref field declaration

Syntax 41—DSL: action declaration

An action declaration optionally specifies an action_super spec, a previously defined action type from
which the new type inherits its members.

The following also apply:

a)

b)

The activity _declaration and body exec_block stmt (see 22.1.3) action body items are mutually
exclusive. An atomic action may specify body exec_block stmt items; it shall not specify activity -
declaration items. A compound action, which contains instances of other actions and activity decla-
ration items, shall not specify body exec_block stmt items.

An abstract action may be declared as a template that defines a base set of field attributes and
behavior from which other actions may inherit. Non-abstract derived actions may be instantiated
like any other action. Abstract actions shall not be instantiated directly.

An abstract action may be derived from another abstract action, but not from a non-abstract action.

Abstract actions may be extended, but the action remains abstract and may not be instantiated
directly.

PSS/C++ does not support declaring abstract actions.

Copyright © 2021 Accellera. All rights reserved.
121

Portable Test and Stimulus Standard 2.0 — April 2021

11.2 C++ syntax
Actions are declared using the action class.

The corresponding C++ syntax for Syntax 41 is shown in Syntax 42.

pss::action
Defined in pss/action.h (see C.2).
class action;
Base class for declaring an action.
Member functions
action (const scope& name) : constructor
virtual void pre solve () :in-line pre_solve exec block
virtual void post_solve () :in-line post_solve exec block

template <class T=component> detail::comp ref<T> comp (); :referto action’s context
component instance

Syntax 42—C++: action declaration

11.3 Examples
11.3.1 Atomic actions

Examples of an atomic action declaration are shown in Example 51 and Example 52.

action write {
output data buf data;
rand int size;
//implementation details

b

Example 51—DSL: atomic action

The corresponding C++ example for Example 51 is shown in Example 52.

class write : public action {
output <data buf> data {"data"};
rand attr<int> size {"size"};
// implementation details

b

Example 52—C++: atomic action

Copyright © 2021 Accellera. All rights reserved.
122

Portable Test and Stimulus Standard 2.0 — April 2021

11.3.2 Compound actions

Compound actions instantiate other actions within them and use activity statements (see Clause 13) to
define the relative scheduling of these sub-actions.

Examples of compound action usage are shown in Example 53 and Example 54.

action sub a {...};

action compound a {
sub a al, a2;
activity {
al;
az;

Example 53—DSL: compound action

The corresponding C++ example for Example 53 is shown in Example 54.

class sub_a : public action { ... };

class compound a : public action {
action handle<sub a> al{"al"}, az2{"a2"};
activity act {
al,
a2
}i
bi

Example 54—C++: compound action

Copyright © 2021 Accellera. All rights reserved.
123

Portable Test and Stimulus Standard 2.0 — April 2021

11.3.3 Abstract actions

Abstract action types are used to capture common features of different actions, including actions of different
components. Abstract actions may not be traversed directly. Rather, they are used through inheritance, as
base types for non-abstract action types. Abstract action types may be declared outside the scope of a
component, unlike non-abstract actions, which may only be declared in a component scope.

An example of abstract action usage is shown in Example 55. In this example, abstract action base is
declared outside a component scope, in package mypkg, and subsequently extended in the same package.
Action derived is declared as a non-abstract subtype of action base.

package mypkg {
abstract action base {
rand int 1i;
constraint i>5 && 1<10;

}

// action base remains abstract
extend action base {
rand int j;

component pss_top {
import mypkg::*;

action derived : base {
constraint i>6;
constraint j>9;

Example 55—DSL: abstract action

NOTE—PSS/C++ does not support declaring abstract actions.

Copyright © 2021 Accellera. All rights reserved.
124

Portable Test and Stimulus Standard 2.0 — April 2021

12. Template types

12.1 General
Template types in PSS/DSL provide a way to define generic parameterized types.

In many cases, it is useful to define a generic parameterizable type (struct/flow object/resource object/action/
component) that can be instantiated with different parameter values (e.g., array sizes or data types).
Template types maximize reuse, avoid writing similar code for each parameter value (value or data type)
combination, and allow a single specification to be used in multiple places.

Template types must be explicitly instantiated by the user, and only an explicit instantiation of a template
type represents an actual type.

The following sections describe how to define, use, and extend a template type when using the PSS/DSL
input.

NOTE—PSL parameterized types are not supported in PSL/C++. Referencing PSS parameterized types between PSS/
C++ and PSS/DSL is not supported.

12.2 Template type declarations

A template type (struct, action, component, ctc.) declaration specifies a list of formal type or value
template parameter declarations. The parameters are provided as a comma-separated list enclosed in angle
brackets (<>) following the name of the template type.

A template type may inherit from another template or non-template data type. A non-template type may
inherit from a template type instance. In both cases, the same inheritance rules and restrictions as for the
corresponding non-template type of the same type category are applied (e.g., a template struct may inherit
from a struct, or from a template struct).

The DSL syntax specified in the corresponding struct/action/component sections contains the
template_param_decl_list nonterminal marked as optional. When the parameter declaration list enclosed in
angle brackets is provided on a struct/action/component declaration, it denotes that the struct/action/
component type is a template generic type.

12.2.1 DSL syntax

struct_declaration ::= struct kind identifier [template param decl list |
[struct_super spec | { { struct_body item } }

component_declaration ::= component component _identifier [template param_decl list]
[component super_spec | { { component_body item } }

action_declaration ::= action action identifier [template param_decl list]
[action_super_spec] { { action_body_item } }
template_param_decl list ::= < template_param_decl {, template param_decl } >

template param_decl ::= type param_decl | value param_decl

Syntax 43—DSL: Template type declaration

Copyright © 2021 Accellera. All rights reserved.
125

Portable Test and Stimulus Standard 2.0 — April 2021

12.2.2 Examples

Generic template-type declaration for various type categories are shown in Example 56.

struct my template s <type T> ({
T t attr;
}

buffer my buff s <type T> {
T t attr;
}

action my consumer action <int width, bool is wide> ({
compile assert (width > 0);

}

component eth controller c <struct ifg config s, bool full duplex = true> ({

}

Example 56—DSL: Template type declarations

12.3 Template parameter declarations

A template parameter is declared as either a type or a value parameter. All template parameters have a name
and an optional default value. All parameters subsequent to the first one that is given a default value shall
also be given default values. Therefore, the parameters with defaults shall appear at the end of the parameter
list. Specifying a parameter with a default value followed by a parameter without a default value shall be
reported as an error.

A template parameter can be referenced using its name inside the body and the super-type specification of
the template type and all subsequent generic template type extensions, including the template type instance
extensions. A template parameter may not be referenced from within subtypes that inherit from the template
type that originally defined the parameter.

12.3.1 Template value parameter declarations

Value parameters are given a data type and optionally a default value, as shown below.

12.3.1.1 DSL syntax

value param_decl ::= data_type identifier [= constant_expression |
Syntax 44—DSL: Template value parameter declaration

The following also apply:

a) A value parameter can be referenced using its name anywhere a constant expression is allowed or
expected inside the body and the super-type specification of the template type.

b) Valid data types for a value param_decl are restricted to the scalar int, bit, bool, string, and enum
types.

¢) The default value, if provided, may also reference one or more of the previously defined parameters.

d) To avoid parsing ambiguity, a Boolean greater-than (>) or less-than (<) expression provided as a
default value shall be enclosed in parentheses.

Copyright © 2021 Accellera. All rights reserved.
126

Portable Test and Stimulus Standard 2.0 — April 2021

12.3.1.2 Examples

An example of declaring an action type that consumes a varying number of resources is shown in
Example 57.

action my consumer action <int n locks = 4> {
compile assert (n_locks in [1..16]);
lock my resource res[n locks];

}

Example 57—DSL: Template value parameter declaration

Example 58 contains a Boolean greater-than expression that must be enclosed in parentheses and depends
on a previous parameter:

action my consumer action <int width, bool is wide = (width > 10) > {
compile assert (width > 0);

}

Example 58—DSL: Another template value parameter declaration

12.3.2 Template type parameter declarations

Type parameters are prefixed with either the type keyword or a type-category keyword in order to identify
them as type parameters.

When the type keyword is used, the parameter is fully generic. In other words, it can take on any type.
Specifying category type parameters provides more information to users of a template type on acceptable
usage and allows tools to flag usage errors earlier. A category type parameter enforces that a template
instance parameter value must be of a certain category/class of type (e.g., struct, action, etc.). A category
type parameter can be further restricted such that the specializing type (the parameter value provided on
instantiation) must be related via inheritance to a specified base type.

The syntax for declaring a type parameter is shown below.

12.3.2.1 DSL syntax

type param_decl ::= generic_type param_decl | category type param decl
generic_type_param_decl ::= type identifier [= type_identifier |
category type param_decl ::=type category identifier [type restriction | [= type identifier]
type_restriction ::= : type_identifier
type category ::=

action

| component

| struct_kind

Syntax 45—DSL: Template type parameter declaration

Copyright © 2021 Accellera. All rights reserved.
127

Portable Test and Stimulus Standard 2.0 — April 2021

The following also apply:

a) A type parameter can be referenced using its name anywhere inside the body of the template type
where a type is allowed or expected.

b) The default value, if provided, may also reference one or more of the previously defined parameters.
12.3.2.2 Examples

Examples of a generic type and a category type parameter are shown in Example 59.

struct my container s <struct T> {
T t attr;
}

struct my template s <type T> {
T t attr;
}

Example 59—DSL: Template generic type and category type parameters

In the example above, the template parameter T of my container s must be of struct type, while in the
case of my template_s, the template parameter T may take on any type.

An example of how to use type restrictions in the case of a type-category parameter is shown in Example 60.

struct base t {
rand bit[3:0] core;

struct my subl t : base t {
rand bit[3:0] addl;

struct my sub2 t : base t {
rand bit[3:0] add2;
}

buffer bl : base t { }
buffer b2 : base t { }

action my action _a <buffer B : base t> {

}

struct my container s <struct T : base t = my subl t> {
T t attr;
constraint t attr.core >= 1;

}

Example 60—DSL: Template parameter type restriction

In the example above, the template parameter T of my container s must be of type base t or one of
its struct subtypes (my subl t ormy sub2 t,butnotbl or b2). This allows my container sto
reasonably assume that T contains an attribute named ‘core’, and communicates this requirement to users
of this type and to the PSS processing tool. The template parameter B of my action_a must be of one of
the buffer subtypes of base t (bl orb2).

Copyright © 2021 Accellera. All rights reserved.
128

Portable Test and Stimulus Standard 2.0 — April 2021

The base type of the template type may also be a type parameter. In this way, the inheritance can be
controlled when the template type is instantiated.

In Example 61, the my container s template struct inherits from the struct type template type
parameter.

struct my basel t {
rand int attrl;

struct my base2 t {
rand int attr2;

struct my container s <struct T> : T {

struct top s {
rand my container s <my basel t> contl;
rand my container s <my base2 t> cont2;
constraint contl.attrl == cont2.attr2;

Example 61—DSL: Template parameter used as base type

12.4 Template type instantiation

A template type is instantiated using the name of the template type followed by the parameter value list
(specialization) enclosed in angle brackets (<>). Template parameter values are specified positionally.

The explicit instantiation of a template type represents an actual type. All explicit instantiations provided
with the same set of parameter values are the same actual type.

12.4.1 DSL syntax

type identifier ::=[::] type_identifer elem { :: type identifer elem }
type_identifier_elem ::= identifier [template param_ value list]
template param_value list ::= <[template_param value { , template_param_value }] >

template param_value ::= constant_expression | data_type

Syntax 46—DSL: Template type instantiation

The following also apply:
a) Parameter values must be specified for all parameters that were not given a default value.

b) An instance of a template type must always specify the angle brackets (<>), even if no parameter
value overrides are provided for the defaults.

c) The specified parameter values must comply with parameter categories and parameter type restric-
tions specified for each parameter in the original template declaration, or an error shall be generated.

d) To avoid parsing ambiguity, a Boolean greater-than (>) or less-than (<) expression provided as a
parameter value must be enclosed in parentheses.

Copyright © 2021 Accellera. All rights reserved.
129

Portable Test and Stimulus Standard 2.0 — April 2021

12.4.2 Examples

struct base t {
rand bit[3:0] core;

struct my subl t : base t {
rand bit[3:0] addl;

struct my sub2 t : base t {
rand bit[3:0] add2;

struct my container s <struct T : base t = my subl t> {
T t attr;
constraint t attr.core >= 1;

}

struct top_ s {
my container s<> my subl container attr;
my container s<my sub2 t> my sub2 container attr;

}

Example 62—DSL: Template type instantiation

In Example 62 above, two attributes of my container s type are created. The first uses the default
parameter value. The second specifies the my sub2 t type as the value for the T parameter.

Type qualification for an action declared in a template component is shown in Example 63 below.

component my compl ¢ <int bus width = 32> {
action my actionl a { }
action my action2 a <int nof iter = 4> { }

}

component pss_top {
my compl c<64> compl;
my compl c<32> comp2;

action test {
activity {
do my compl c<64>::my actionl a;
do my compl c<64>::my action2 a<>;
do my compl c::my actionl a; // Error - my compl c must be specialized
do my compl c<>::my actionl a;

Example 63—DSL: Template type qualification

Copyright © 2021 Accellera. All rights reserved.
130

Portable Test and Stimulus Standard 2.0 — April 2021

Example 64 depicts various ways of overriding the default values. In the example below, the
my struct t<2> instance overrides the parameter A with 2, and preserves the default values for
parameters B and C. The my struct t<2, 8> instance overrides the parameter A with 2, parameter B
with 8, and preserves the default value for C.

struct my_s_l {1}
struct my s 2 { }

struct my struct t <int A = 4, int B = 7, int C = 3> { }

struct container t ({
my struct_ t<2> a; // instantiated with <2, 7, 3>
my struct t<2,8> b; // instantiated with <2, 8, 3>

}

Example 64—DSL: Overriding the default values

12.5 Template type user restrictions

A generic template type may not be used in the following contexts:
— As aroot component
— As aroot action

— As an inferred action to complete a partially specified scenario
Template types are explicitly instantiated by the user, and only an explicit instantiation of a template type
represents an actual type. Only action actual types can be inferred to complete a partially specified scenario.

The root component and the root action must be actual types.

Template types may not be used as parameter types or return types of imported functions.

Copyright © 2021 Accellera. All rights reserved.
131

Portable Test and Stimulus Standard 2.0 — April 2021

13. Activities

When a compound action includes multiple operations, these behaviors are described within the action
using one or more activity statements. An activity specifies the set of actions to be executed and the
scheduling relationship(s) between them. If more than one activity is specified in an action, the execution
semantics are the same as if the activity statements were combined in a schedule statement (see 13.3.5 and
13.6). A reference to an action within an activity is via an action handle, and the resulting action traversal
causes the referenced action to be evaluated and randomized (see 13.3.1).

An activity, on its own, does not introduce any scheduling dependencies for its containing action. However,
flow object or resource scheduling constraints of the sub-actions may introduce scheduling dependencies for
the containing action relative to other actions in the system.

13.1 Activity declarations

Because activities are explicitly specified as part of an action, activities themselves do not have a separate
name. Relative to the sub-actions referred to in the activity, the action that contains the activity is referred to
as the context action.

13.2 Activity constructs

Each node of an activity represents an action, with the activity specifying the temporal, control, and/or data
flow between them. These relationships are described via activity rules, which are explained herein. See also
Syntax 47 and Syntax 48.

Copyright © 2021 Accellera. All rights reserved.
132

Portable Test and Stimulus Standard 2.0 — April 2021

13.2.1 DSL syntax

activity _declaration ::= activity { { [label identifier : | activity stmt } }
activity _stmt ::=
[label identifier :] labeled activity stmt

| activity data_field

| activity_bind stmt

| action_handle_declaration

| activity _constraint_stmt

| activity scheduling_constraint

| stmt_terminator
labeled_activity stmt ::=

activity action_traversal_stmt

| activity _sequence block stmt

| activity parallel stmt

| activity schedule stmt

| activity _repeat stmt

| activity foreach stmt

| activity_select stmt

| activity if else_stmt

| activity_match_stmt

| activity replicate stmt

| activity _super stmt

| symbol_call

Syntax 47—DSL.: activity statement

NOTE—PSS/C++ does not support declaring action handles and activity data fields within an activity scope.
13.2.2 C++ syntax
In C++, an activity is declared by instantiating the activity class.

The corresponding C++ syntax for Syntax 47 is shown in Syntax 48.

Copyright © 2021 Accellera. All rights reserved.
133

Portable Test and Stimulus Standard 2.0 — April 2021

pss::action::activity
Defined in pss/action.h (see C.2).
template <class... R> class activity;
Declare an activity.
Member functions

template <class... R> activity(R&&... /*detail::Stmt*/ r) :constructor

Syntax 48—C++: activity statement

13.3 Action scheduling statements

By default, statements in an activity specify sequential behaviors, subject to data flow constraints. In
addition, there are several statements that allow additional scheduling semantics to be specified. Statements
within an activity may be nested, so each element within an activity statement is referred to as a sub-activity.

13.3.1 Action traversal statement

An action traversal statement designates the point in the execution of an activity where an action is
randomized and evaluated (see Syntax 49 and Syntax 50). The action being traversed may be specified via
an action handle referring to an action field that was previously declared or the action being traversed may
be specified by type, in which case the action instance is anonymous.

13.3.1.1 DSL syntax

activity action_traversal stmt ::=
identifier [| expression |] inline constraints_or_empty
| do type_identifier inline constraints_or_empty
inline constraints_or_empty ::=

with constraint_set

s

Syntax 49—DSL: Action traversal statement

identifier names a unique action handle or variable in the context of the containing action type. If identifier
refers to an action handle array (see 13.3.2), then a specific array element may be specified with the
optional array subscript. The alternative form is an anonymous action traversal, specified by the keyword
do, followed by an action-type specifier and an optional in-line constraint.

The following also apply:

a) The action variable is randomized and evaluated at the point in the flow where the statement occurs.
The variable may be of an action type or a data type declared in the context action with the action
modifier. In the latter case, it is randomized, but has no observed execution or duration (see
Example 195 and Example 196).

Copyright © 2021 Accellera. All rights reserved.
134

Portable Test and Stimulus Standard 2.0 — April 2021

1) An action handle is considered uninitialized until it is first traversed. The fields within the
action cannot be referenced in an exec block or conditional activity statement until after the
action is first traversed. The steps that occur as part of the action traversal are as follows:

i) The pre_solve block (if present) is executed.
i) Random values are selected for rand fields.
iii) The post_solve block (if present) is executed.
iv) The body exec block (if present) is executed.
v) The activity block (if present) is evaluated.

vi) The validity of the constraint system is confirmed, given any changes by the post_solve or
body exec blocks.

2) Upon entry to an activity scope, all action handles traversed in that scope are reset to an unini-
tialized state.

b) The anonymous action traversal statement is semantically equivalent to an action traversal with the
exception that it does not create an action handle that may be referenced from elsewhere in the stim-
ulus model.

¢) A named action handle may only be traversed once in the following scopes and nested scopes
thereof:

1) sequential activity scope (e.g., sequence or repeat)
2) parallel
3) schedule

d) Formally, a traversal statement is equivalent to the sub-activity of the specified action type, with the
optional addition of in-line constraints. The sub-activity is scheduled in accordance with the
scheduling semantics of the containing activity or sub-activity.

e) Other aspects that impact action-evaluation scheduling, are covered via binding inputs or outputs
(see 14.4), resource claims (see 15.2), or attribute value assignment.

13.3.1.2 C++ syntax

The corresponding C++ syntax for Syntax 49 is shown in Syntax 50.

pss::action_handle

Defined in pss/action_handle.h (see C.4).
template <class T> action handle;

Declare an action handle.

Member functions

action handle (const scope& name) : constructor

template <class... R> action handle<T> with

(const R&... /*detail ::AlgebExpr*/ constraints) :add constraint to action handle
T* operator->() :accessunderlying action type
T& operator* () :access underlying action type

Syntax 50—C++: Action traversal statement

Copyright © 2021 Accellera. All rights reserved.
135

Portable Test and Stimulus Standard 2.0 — April 2021

13.3.1.3 Examples

Example 65 and Example 66 show an example of traversing an atomic action variable. Action A is an atomic
action that contains a 4-bit random field £1. Action B is a compound action encapsulating an activity
involving two invocations of action A. The default constraints for A apply to the evaluation of al. An
additional constraint is applied to a2, specifying that £1 shall be less than 10. Execution of action B results
in two sequential evaluations of action A.

action A {
rand bit[3:0] £1;

action B {
A al, a2;

activity {
al;
a2 with {
f1 < 10;
}i

Example 65—DSL: Action traversal

class A : public action {
rand attr<bit> f1 {"f1", width(3, 0) };
i

class B : public action {
action handle<A> al{"al"}, a2{"a2"};
activity a {
al,
a2.with(a2->f1 < 10)
}i
}i

Example 66—C++: Action traversal

Copyright © 2021 Accellera. All rights reserved.
136

Portable Test and Stimulus Standard 2.0 — April 2021

Example 67 and Example 68 show an example of anonymous action traversal, including in-line constraints.

action A {
rand bit[3:0] £1;

action B {
activity {
do A;
do A with {fl1 < 10;};

Example 67—DSL: Anonymous action traversal

class A : public action {
rand attr<bit> f1 {"f1", width(3, 0) };

b

class B : public action {
activity a {
sequence {
action handle<A>(),
action handle<A>().with(action handle<A>()->fl < 10)
}
bi
}i

Example 68—C++: Anonymous action traversal

Copyright © 2021 Accellera. All rights reserved.
137

Portable Test and Stimulus Standard 2.0 — April 2021

Example 69 and Example 70 show an example of traversing a compound action as well as a random action
variable field. The activity for action C traverses the random action variable field max, then traverses the
action-type field b1. Evaluating this activity results in a random value being selected for max, then the sub-
activity of b1l being evaluated, with al. £1 constrained to be less than or equal to max.

action A {
rand bit[3:0] £1;

}

action B {
A al, a2;

activity {
al;
a2 with {
f1 < 10;
}i

}

action C {
action bit[3:0] max;
B bl;

activity {
max;
bl with {
al.fl <= max;

b

Example 69—DSL: Compound action traversal

Copyright © 2021 Accellera. All rights reserved.
138

Portable Test and Stimulus Standard 2.0 — April 2021

class A : public action {
rand attr<bit> f1 ("f1", width (3, 0)};
b

class B : public action {
action handle<A> al{"al"}, a2{"a2"};

activity a {
al,
az.with(a2->f1 < 10)
i
b

class C : public action {
action attr<bit> max {"max", width(3, 0)};
action handle bl{"bl"};

activity a {
sequence {
max,
bl.with(bl->al->fl <= max)

}i
b

Example 70—C++: Compound action traversal

13.3.2 Action handle array traversal

Arrays of action handles may be declared within an action. These action handle arrays may be traversed as

a whole or traversed as individual elements.

The semantics of traversing individual action handle array elements are the same as those of traversing

individually-declared action handles.

Example 71 below shows traversing an individual action handle array element and one action handle. The

semantics of both action traversal statements are the same.

component pss top {
action A { }
action entry {
A a_arr[4];
A al, a2, a3, a4;
activity {
a arr[0];
al;

Example 71—DSL: Individual action handle array element traversal

Copyright © 2021 Accellera. All rights reserved.
139

Portable Test and Stimulus Standard 2.0 — April 2021

When an action handle array is traversed as a whole, each array element is traversed independently
according to the semantics of the containing scope.

Example 72 below shows an action that traverses the elements of the a_arr action handle array in two
ways, depending on the value of a rand action attribute. Both ways of traversing the elements of a_arr
have identical semantics.

component pss top {
action A { }
action entry {
rand bit traverse arr;
A a arr[2];
activity {
if (traverse arr) {
a_arr;
} else {
a arr[0];
a arr([l];

Example 72—DSL: Action handle array traversal

The contexts in which action handle arrays may be traversed, and the resulting semantics, are described in
the table below.

Table 19—Action handle array traversal contexts and semantics

Context Semantics
parallel All array elements are scheduled for traversal in parallel.
schedule All array elements are scheduled for traversal independently.
select One array element is randomly selected and traversed.
sequence All array elements are scheduled for traversal in sequence from 0 to N-1.

Copyright © 2021 Accellera. All rights reserved.
140

Portable Test and Stimulus Standard 2.0 — April 2021

13.3.3 Sequential block

An activity sequence block statement specifies sequential scheduling between sub-activities (see Syntax 51
and Syntax 52).

13.3.3.1 DSL syntax

activity_sequence block stmt ::=[sequence] { { activity_stmt } }

Syntax 51—DSL: Activity sequence block

The following also apply:

a) Statements in a sequential block execute in order so that one sub-activity completes before the next
one starts.

b) Formally, a sequential block specifies sequential scheduling between the sets of action executions
per the evaluation of activity stmt, .. activity stmt,, keeping all scheduling dependencies within the
sets and introducing additional dependencies between them to obtain sequential scheduling (see
6.3.2).

c¢) Sequential scheduling does not rule out other inferred dependencies affecting the nodes in the
sequence block. In particular, there may be cases where additional action executions must be sched-
uled in between sub-activities of subsequent statements.

NOTE—PSS/C++ requires the sequence block to be explicitly specified, while PSS/DSL interprets a curly brace-
enclosed scope as a sequence.

13.3.3.2 C++ syntax

The corresponding C++ syntax for Syntax 51 is shown in Syntax 52.

pss::action::sequence
Defined in pss/action.h (see C.2).
template <class... R> class sequence;
Declare a sequence block.
Member functions

template <class... R> sequence (R&&... /*detail::Stmt*/r) : constructor

Syntax 52—C++: Activity sequence block

13.3.3.3 Examples

Assume 2 and B are action types that have no rules or nested activity (see Example 73 and Example 74).

Action my_test specifies one execution of action A and one of action B with the scheduling dependency
() -> (B); the corresponding observed behavior is {start A, end A, start B, end B}.

Now assume action B has a state precondition which only action C can establish. C may execute before,

concurrently to, or after A, but it shall execute before B. In this case the scheduling dependency relation

Copyright © 2021 Accellera. All rights reserved.
141

Portable Test and Stimulus Standard 2.0 — April 2021

would include (A) -> (B) and (C) -> (B) and multiple behaviors are possible, such as {start C,
start A, end A, end C, start B, end B}.

Finally, assume also C has a state precondition which only A can establish. Dependencies in this case are
(A) > (B), (A) => (C) and (C) -> (B) (note that the first pair can be reduced) and, consequently, the
only possible behavior is {start A, end A, start C, end C, start B, end B}.

action my test {
A a;
B b;
activity {
ay
b;

b

Example 73—DSL: Sequential block

class my test : public action {
action handle<A> a{"a"};
action handle b{"b"};
activity act {
a,
b
}i
}i

Example 74—C++: Sequential block

Example 75 and Example 76 show all variants of specifying sequential behaviors in an activity. By default,
statements in an activity execute sequentially. The sequence keyword is optional, so placing sub-activities
inside braces ({}) is the same as an explicit sequence statement, which includes sub-activities inside braces.
The examples show a total of six sequential actions: A, B, A, B, A, B.

action my test {
A al, a2, a3;
B bl, b2, b3;
activity {
al;
bl;
{az2; b2;};
sequence{a3; b3;};

b

Example 75—DSL: Variants of specifying sequential execution in activity

Copyright © 2021 Accellera. All rights reserved.
142

Portable Test and Stimulus Standard 2.0 — April 2021

class my test : public action {

action handle<A> al{"al"}, a2{"a2"}, a3{"a3"};
action handle bl{"bl"}, b2{"b2"}, b3{"b3"};
activity act {
al, bil,
{az2, b2},
sequence {a3, b3}
b
b

Example 76—C++: Variants of specifying sequential execution in activity

13.3.4 parallel

The parallel statement specifies sub-activities that execute concurrently (see Syntax 53 and Syntax 54).

13.3.4.1 DSL syntax

activity parallel stmt ::= parallel [activity join spec]| { { activity stmt } }

Syntax 53—DSL: Parallel statement

The following also apply:

a)

b)

Parallel activities are invoked in a synchronized way and then proceed without further synchroniza-
tion until their completion. Parallel scheduling guarantees that the invocation of an action in one
sub-activity branch does not wait for the completion of any action in another.

Formally, the parallel statement specifies parallel scheduling between the sets of action executions
per the evaluation of activity _stmt; .. activity_stmt,, keeping all scheduling dependencies within the
sets, ruling out scheduling dependencies across the sets, and introducing additional scheduling
dependencies to initial action executions in each of the sets in order to obtain a synchronized start
(see 6.3.2).

In the absence of an activity join_spec (see 13.3.6), execution of the activity statement following the
parallel block is scheduled to begin after all parallel branches have completed. When an
activity_join_spec is specified, execution of the activity statement following the parallel block is
scheduled based on the join specification.

Copyright © 2021 Accellera. All rights reserved.
143

Portable Test and Stimulus Standard 2.0 — April 2021

13.3.4.2 C++ syntax

The corresponding C++ syntax for Syntax 53 is shown in Syntax 54.

pss::action::parallel
Defined in pss/action.h (see C.2).
template <class... R> class parallel;
Declare a parallel block.
Member functions

template <class... R> parallel (R&&... /*detail::Stmt*/ r) :constructor
Syntax 54—C++: Parallel statement

13.3.4.3 Examples

Assume A, B, and C are action types that have no rules or nested activity (see Example 77 and Example 78).

The activity in action my test specifies two dependencies (a) -> (b) and (a) -> (c). Since the
executions of both b and ¢ have the exact same scheduling dependencies, their invocation is synchronized.

Now assume action type C inputs a buffer object and action type B outputs the same buffer object type, and
the input of c is bound to the output of b. According to buffer object exchange rules, the inputting action
shall be scheduled after the outputting action. But this cannot satisfy the requirement of parallel scheduling,
according to which an action in one branch cannot wait for an action in another. Thus, in the presence of a
separate scheduling dependency between b and c, this activity shall be illegal.

action my test {
A a;
B b;
C c;
activity {
ay
parallel {
b;
cy

Example 77—DSL: Parallel statement

Copyright © 2021 Accellera. All rights reserved.
144

Portable Test and Stimulus Standard 2.0 — April 2021

class my test : public action {

action_handle<A> a{"a"};
action handle b{"b"};
action handle<C> c{"c"};
activity act {

a,

parallel {

bl

Example 78—C++: Parallel statement

In Example 79 and Example 80, the semantics of the parallel construct require the sequences {A,B} and
{C, D} to start execution at the same time. The semantics of the sequential block require that the execution
of B follows A and D follows C. It is illegal to have any scheduling dependencies between sub-activities in a
parallel statement, so neither A nor B may have any scheduling dependencies relative to either C or D.

Even though actions A and D lock the same resource type from the same pool, the pool contains a sufficient
number of resource instances such that there are no scheduling dependencies between the actions. If
pool R contained only a single instance, there would be a scheduling dependency in that A and D could not
overlap, which would violate the rules of the parallel statement.

resource R{...}

pool [4] R R pool;
bind R pool *;

action A { lock R r; }
action B {}

action C {}

action D { lock R r; }

action my test {
activity {
parallel {
{do A; do B;}
{do C; do D;}

Example 79—DSL: Another parallel statement

Copyright © 2021 Accellera. All rights reserved.
145

Portable Test and Stimulus Standard 2.0 — April 2021

struct R : public resource { ... };

pool<R> R pool {"R pool", 4};
bind R bind {R pool};

class A : public action { lock<R> r{"r"}; };
class B : public action { };
class C : public action { }s
class D : public action { lock<R> r{"r"}; };

class my test : public action {...
activity act {
parallel {

sequence {
action handle<A>(),
action handle ()

}I

sequence {
action handle<C>(),
action handle<D> ()

}

}i
b

Example 80—C++: Another parallel statement

13.3.5 schedule

The schedule statement specifies that the PSS processing tool shall select a legal order in which to evaluate
the sub-activities, provided that one exists. See Syntax 55 and Syntax 56.

13.3.5.1 DSL syntax

activity schedule stmt ::= schedule [activity join spec] { { activity stmt } }

Syntax 55—DSL: Schedule statement

The following also apply:

a)

b)

All activities inside the schedule block shall execute, but the PSS processing tool is free to execute
them in any order that satisfies their other scheduling requirements.

Formally, the schedule statement specifies that any scheduling of the combined sets of action execu-
tions per the evaluation of activity_stmt, .. activity_stmt, is permissible, as long as it keeps all sched-
uling dependencies within the sets and introduces (at least) the necessary scheduling dependencies
across the sets in order to comply with the rules of input-output binding of actions and resource
assignments.

In the absence of an activity join spec (see 13.3.6), execution of the activity statement following the
schedule block is scheduled to begin after all statements within the block have completed. When an
activity_join_spec is specified, execution of the activity statement following the schedule block is
scheduled based on the join specification.

Copyright © 2021 Accellera. All rights reserved.
146

Portable Test and Stimulus Standard 2.0 — April 2021

13.3.5.2 C++ syntax

The corresponding C++ syntax for Syntax 55 is shown in Syntax 56.

pss::action::schedule
Defined in pss/action.h (see C.2).

template <class... R> class schedule;
Declare a schedule block.

Member functions

template <class... R> schedule (R&&... /*detail::Stmt*/ r) :constructor
Syntax 56—C++: Schedule statement

13.3.5.3 Examples

Consider the code in Example 81 and Example 82, which are similar to Example 77 and Example 78, but
use a schedule block instead of a parallel block. In this case, the following executions are valid:

a) The sequence of action nodes a, b, c.

b) The sequence of action nodes a, c, b.

c¢) The sequence of action node a, followed by b and ¢ run in any order, subject to other scheduling
constraints.

action my test ({
A a;
B b;
C c;
activity {
ay
schedule {
b;
c;

Example 81—DSL: Schedule statement

Copyright © 2021 Accellera. All rights reserved.
147

Portable Test and Stimulus Standard 2.0 — April 2021

class my test : public action {
action_handle<A> a{"a"};
action handle b{"b"};
action handle<C> c{"c"};

activity act {
ay
schedule {

Example 82—C++: Schedule statement

Note that neither b nor ¢ may start execution until after the completion of a, and the start of execution for
either may be subject to additional scheduling constraints. In contrast to b and ¢ executing in parallel, as in
Example 77, there may be scheduling dependencies between b and ¢ in the schedule block. The scheduling
graph for the activity is shown here:

Figure 6—Scheduling graph of activity with schedule block

Copyright © 2021 Accellera. All rights reserved.
148

Portable Test and Stimulus Standard 2.0 — April 2021

For the case where b and c overlap, the runtime behaviors will execute as shown here:

behavior

Time

Figure 7—Runtime behavior of activity with schedule block

In contrast, consider the code in Example 83 and Example 84. In this case, any execution order in which
both B comes after 2 and D comes after C is valid.

If both A and D wrote to the same state variable, they would have to execute sequentially. This is in addition
to the sequencing of A and B and of C and D. In the case where D writes before 2, the sequence would be {C,
D, A, B}. In the case where A writes before D, the runtime behavior would be as shown in Figure 8.

action A {}
action B {}
action C {}
action D {}

action my test ({
activity {
schedule {
{do A; do B;}
{do C; do D;}

Example 83—DSL: Scheduling block with sequential sub-blocks

Copyright © 2021 Accellera. All rights reserved.
149

Portable Test and Stimulus Standard 2.0 — April 2021

class A : public action { }s;
class B : public action { };
class C : public action { }s
class D : public action { }s

class my test : public action {
activity act {
schedule {

sequence {
action handle<A>(),
action handle ()

}I

sequence {
action handle<C>(),
action handle<D> ()

}

}i
b

Example 84—C++: Scheduling block with sequential sub-blocks

behavior

Vv

Time

Figure 8—Runtime behavior of scheduling block with sequential sub-blocks

Copyright © 2021 Accellera. All rights reserved.
150

Portable Test and Stimulus Standard 2.0 — April 2021

13.3.6 Fine-grained scheduling specifiers

Fine-grained scheduling specifiers modify the termination semantics for parallel and schedule blocks (see
Syntax 53, Syntax 55, and Syntax 57). The semantics of fine-grained scheduling are defined strictly at the

activity scheduling level. The semantics do not assume that any runtime execution information is
incorporated by the PSS processing tool in the scheduling process. Activity scheduling in the presence of a
fine-grained scheduling specifier is still subject to all other scheduling rules.

13.3.6.1 DSL syntax

activity join spec ::=
activity join_branch
| activity join_select
| activity join_none
| activity join_first
activity join_branch ::= join_branch (label identifier { , label identifier })
activity join select ::= join_select (expression)
activity join_none ::= join_none

activity join first ::= join_first (expression)

Syntax 57—DSL: Activity join specification

The following also apply:

a)

b)

d)

join_branch accepts a list of labels referring to labeled activity statements. The activity statement
following the fine-grained scheduling block is scheduled after all the listed activity statements have
completed.

1) The label identifier used in the join_branch specification must be the label of a top-level
branch within the parallel or schedule block to which the join_branch specification is
applied.

2) When the label identifier used in the join_branch specification applies to traversal of an array,
the activity statement following the fine-grained scheduling block is scheduled after all actions
in the array have completed.

join_select accepts an expression specifying the number of top-level activity statements within the
fine-grained scheduling block on which to condition execution of the activity statement following
the fine-grained scheduling block. The specific activity statements shall be selected randomly. Exe-
cution of the activity statement following the fine-grained scheduling block is scheduled after the
selected activity statements.

1) The expression shall be of a numeric type. The value of the expression must be determinable at
solve time. If the value is 0, the join_select is equivalent to join_none.

2) When an action array is traversed, each element of the array is considered a separate action that
may be selected independently.

join_none specifies that the activity statement following the fine-grained scheduling block has no
scheduling dependency on activity statements within the block.

join_first specifies that the activity statement following the fine-grained scheduling block has a run-
time execution dependency on the first N activity statements within the fine-grained scheduling
block to complete execution. The activity statement following the fine-grained scheduling block has
no scheduling dependency on activity statements within the block, only a runtime dependency.

Copyright © 2021 Accellera. All rights reserved.
151

Portable Test and Stimulus Standard 2.0 — April 2021

1) The expression shall be of a numeric type. The value of the expression must be determinable at
solve time. If the value is 0, the join_first is equivalent to join_none.

2) When an action array is traversed, each element of the array is considered a separate action that
may be selected independently.

The application scope of a fine-grained scheduling block is bounded by the sequential block that contains it.
In other words, all activity statements that start within the fine-grained scheduling block must complete
before the statement following the containing sequential block begins. Activities started, but not joined,
within a fine-grained scheduling block are not implicitly waited for by any containing parallel or schedule
blocks. Only the containing sequential block causes a join on activities started within it.

NOTE—There is no PSS/C++ equivalent for the fine-grained scheduling modifiers to either parallel or schedule.
13.3.6.2 Examples

In Example 85, the innermost parallel block (1.4) starts two activities (L5 and L6), while only waiting for
one (L5) to complete before continuing. Since L5 traverses the action array b, all elements of b must
complete before continuing. The next level of parallel block (1.2) waits for its two branches to complete (L3
and L4), but does not wait for 1.6 to complete. The outermost parallel block (L1) waits for one of its
branches (L2) to complete before proceeding. This means that both L7 and L6 may be in-flight when L8 is
traversed.

B b[2];
activity {
Ll: parallel join branch(L2) {
L2: parallel {
L3: do A;
L4: parallel join branch (L5) {
L5: b;
L6: do C;

L7: do D;

L8: do F;

Example 85—DSL: join_branch

The scheduling graph of the activity is shown in Figure 9.

Copyright © 2021 Accellera. All rights reserved.
152

Portable Test and Stimulus Standard 2.0 — April 2021

(1
w1/

L1

L2
L7:

@ @p @p L6:C

%
Figure 9—join_branch scheduling graph

The runtime behavior is shown in Figure 10.

behavior
G NN S S—
% L3:A ﬁ
——(__Lsb[o])
% L5:b[1] >\
e T
| K'(8F)i

Time

Figure 10—join_branch runtime behavior

Copyright © 2021 Accellera. All rights reserved.
153

Portable Test and Stimulus Standard 2.0 — April 2021

Activity scheduling in the presence of a fine-grained scheduling block is still subject to all other scheduling
rules. For example, if both 1.6 and L8 in the example above contend for the same single resource, they must
be scheduled sequentially in order to avoid a resource conflict.

For the following four examples, assume that each of the three actions in the activity locks a resource from
the same pool.

In Example 86, the parallel block causes traversal of branches L1 and L2 to be scheduled in parallel. The
join_branch specifier causes traversal of action C to be scheduled with a sequential dependency on the
activity statement labeled L2. Traversal of action C may not begin until the activity statement labeled L2 has
completed. To avoid adding additional scheduling dependencies, the resource pool would need a minimum
of two resource instances. Actions A and B would each lock a resource instance, and C, since it is guaranteed
not to start until A completes, would lock the same resource instance as that assigned to A. Note that this
allocation is handled at solve-time, and is independent of whether B completes before or after A completes.

activity {
L1l : parallel join branch(L2) {

L2: do A;
L3: do B;
}
L4: do C;

Example 86—DSL: join_branch with scheduling dependency

The scheduling graph of the activity is shown in Figure 11.

Figure 11—Scheduling graph of join_branch with scheduling dependency

Copyright © 2021 Accellera. All rights reserved.
154

Portable Test and Stimulus Standard 2.0 — April 2021

The runtime behavior is shown in Figure 12.

behavior

|—
w
o

Vv

Figure 12—Runtime behavior of join_branch with scheduling dependency

In Example 87, the parallel block causes traversal of the branches labeled L2 and L3 to be scheduled in
parallel. The join_select specifier causes traversal of action C to be scheduled with a sequential dependency
on a random selection of either the branch labeled L2 or L3. This means that traversal of C may not begin
until after the selected target activity statement has completed. The tool randomly selects N (in this case, 1)
target branch(es) from the candidate branches on which to make traversal of the following activity statement
dependent.

In this example, the resource pool would need a minimum of two resource instances. Because the tool may
not know which of A or B will complete first, it must choose one and assign the same resource instance to
action C. If the tool selected L2 as the branch on which C depends, the behavior would be identical to the
previous example.

activity {
Ll : parallel join select(1l) {

L2: do A;
L3: do B;
}
L4: do C;

Example 87—DSL.: join_select

In Example 88, the join_none specifier causes traversal of action C to be scheduled with no dependencies.
To avoid additional scheduling dependencies, the minimum size of the resource pool must be three, since
each action traversed in the activity must have a unique resource instance.

Actions A and B are scheduled in parallel, and action C is scheduled concurrently with both of them. This
means that C could start at the same time as A and B, but it may not. While the parallel statement precludes
any dependencies between A and B, the join_none qualifier allows action C to be scheduled concurrently,
but there may be additional dependencies between action C and action A and/or B.

Copyright © 2021 Accellera. All rights reserved.
155

Portable Test and Stimulus Standard 2.0 — April 2021

activity {
L1l : parallel join none {
L2: do A;
L3: do B;
}
L4: do C;

Example 88—DSL: join_none

The scheduling graph of the activity is shown in Figure 13.

Figure 13—join_none scheduling graph

In Example 89, the join_first specifier causes the PSS processing tool to condition execution of action C on
runtime execution completion of the first of either action A or B. Since the scheduling tool may not know
which action will complete first, there must be a minimum of three resource instances in the pool in order to
guarantee that C may execute immediately after whichever of A or B completes first. If there are two
instances in the pool, the tool may assign either resource instance to C at solve-time. If the other action
assigned the same resource instance completes last, then action C, because it starts execution after the
previous action completes, will also start its execution after the completion of the first action.

activity {
L1l : parallel join first(1l) {

L2: do A;
L3: do B;
}
L4: do C;

Example 89—DSL.: join_first

Copyright © 2021 Accellera. All rights reserved.
156

Portable Test and Stimulus Standard 2.0 — April 2021

The runtime behavior is shown in Figure 14.

behavior

L4:C —

Vv

Time

Figure 14—join_first runtime behavior

Example 90 illustrates how a sequence block bounds the impact of the fine-grained scheduling specifier.
The execution of L5 is scheduled in sequence with 1.3. L4 and L5 may be scheduled concurrently. L6 is
scheduled strictly sequentially to all statements inside L1, the sequence block.

activity {
L1l: sequence {
L2: parallel join branch(L3) {
L3: do A;
L4: do B;
}
L5: do C;
}
L6: do D;

Example 90—DSL: Scope of join inside sequence block

Copyright © 2021 Accellera. All rights reserved.
157

Portable Test and Stimulus Standard 2.0 — April 2021

The scheduling graph is shown in Example 15.

Figure 15—Scheduling graph of join inside sequence block

The runtime behavior is shown in Figure 16.

behavior

Figure 16—Runtime behavior of join inside sequence block

Copyright © 2021 Accellera. All rights reserved.
158

Portable Test and Stimulus Standard 2.0 — April 2021

Example 91 shows how the join specification may also be used with the schedule block.

activity {
L1 : schedule join branch(L2) {
L2: do A;
L3: do B;
}
L4: do C;

Example 91—DSL: join with schedule block

Assuming there are no scheduling dependencies between actions A and B, the scheduling graph of schedule
block L1 is shown in Figure 17.

In all cases, action C is scheduled subsequent to action A. If A is scheduled before B, then B and C may—or
may not-be scheduled concurrently, although there may be additional dependencies between them. If B is
scheduled before A, the actions are executed in the order B, A, C. If A and B are scheduled concurrently, then

C is still scheduled after A, but again may be concurrent with B, subject to any dependencies between B and
C.

L1

Figure 17—Scheduling graph join with schedule block

Copyright © 2021 Accellera. All rights reserved.
159

Portable Test and Stimulus Standard 2.0 — April 2021

13.4 Activity control flow constructs

In addition to defining sequential and parallel blocks of action execution, repetition and branching
statements can be used inside the activity clause.

13.4.1 repeat (count)
The repeat statement allows the specification of a loop consisting of one or more actions inside an activity.

This section describes the count-expression variant (see Syntax 58 and Syntax 59) and 13.4.2 describes the
while-expression variant.

13.4.1.1 DSL syntax

activity repeat stmt ::=
repeat ([index_identifier :] expression) activity stmt

Syntax 58—DSL: repeat-count statement

The following also apply:
a) expression shall be a non-negative numeric expression (int or bit).

b) Intuitively, the activity stmt is iterated the number of times specified in the expression. An optional
index-variable identifier can be specified that ranges between 0 and one less than the iteration count.
If the expression evaluates to 0, the activity stmt is not evaluated at all.

c) Formally, the repeat-count statement specifies sequential scheduling between N sets of action exe-
cutions per the evaluation of activity stmt N times, where N is the number to which expression eval-
uates (see 6.3.2).

d) The choice of values to rand attributes figuring in the expression shall be such that it yields legal
execution scheduling.

13.4.1.2 C++ syntax

The corresponding C++ syntax for Syntax 58 is shown in Syntax 59.

pss::repeat

Defined in pss/ctrl_flow.h (see C.21).
class repeat;

Declare a repeat statement.

Member functions

repeat (const detail::AlgebExpré& count,
const detail::Stmt& activity) :declare arepeat (count) activity

repeat (const attr<int>& iter, const detail::AlgebExpr& count,
const detail::Stmt& activity) :declare arepeat (count) activity with iterator

Syntax 59—C++: repeat-count statement

Copyright © 2021 Accellera. All rights reserved.
160

Portable Test and Stimulus Standard 2.0 — April 2021

13.4.1.3 Examples

In Example 92 and Example 93, the resulting execution is six sequential action executions, alternating A’s
and B’s, with five scheduling dependencies: (A,) -> (By), (Bg) -> (A1), (A1) > (B1), (By) > (Ay),
(Ay) > (By).

action my test {
A a;
B b;
activity {
repeat (3) {
ay
b;

Example 92—DSL : repeat statement

class my test : public action {
action handle<A> a{"a"};
action_handle b{"b"};

activity act {
repeat { 3,
sequence { a, b }

Example 93—C++: repeat statement

Example 94 and Example 95 show an additional example of using repeat-count.

action my test {
my actionl actionl;
my action2 action2;
activity {
repeat (i : 10) {
if ((1 % 4) ==
actionl;
} else {
action?2;

}

0) {

i

Example 94—DSL: Another repeat statement

Copyright © 2021 Accellera. All rights reserved.
161

Portable Test and Stimulus Standard 2.0 — April 2021

class my test : public action {
action handle<my actionl> actionl{"actionl"};
action handle<my action2> action2{"action2"};
attr<int> i {"i"};

activity act {
repeat { i, 10,
if then else {
cond((i % 4) == 0), actionl, action2

Example 95—C++: Another repeat statement

13.4.2 repeat-while

The repeat statement allows the specification of a loop consisting of one or more actions inside an activity.
This section describes the while-expression variant (see Syntax 60 and Syntax 61).

13.4.2.1 DSL syntax

activity repeat_stmt ::=

| repeat activity stmt while (expression) ;
Syntax 60—DSL: repeat-while statement

The following also apply:

a) expression shall be of type bool.

b) Intuitively, the activity_stmt is iterated so long as the expression condition is true, as sampled after
the activity stmt.

¢) Formally, the repeat-while statement specifies sequential scheduling between multiple sets of
action executions per the iterative evaluation of activity stmt. The evaluation of activity stmt con-
tinues repeatedly so long as expression evaluates to true. expression is evaluated after the execution
of each set in the repeat-while block.

Copyright © 2021 Accellera. All rights reserved.
162

Portable Test and Stimulus Standard 2.0 — April 2021

13.4.2.2 C++ syntax

The corresponding C++ syntax for Syntax 60 is shown in Syntax 61.

pss::repeat_while

Defined in pss/ctrl_flow.h (see C.21).
class repeat while;

Declare a repeat-while activity.

Member functions

repeat while (const detail::Stmté& activity, const cond& a cond)

. constructor

Syntax 61—C++: repeat-while statement

13.4.2.3 Examples

component top {
function bit is last one();

action do something {
bit last one;

exec post solve {
last one = comp.is last one();

}

exec body C = """
printf ("Do Something\n");

wuwn .,
’

action entry {
do something sl1;

activity {
repeat {
sl;
} while (sl.last one !=0);

Example 96—DSL: repeat-while statement

Copyright © 2021 Accellera. All rights reserved.
163

Portable Test and Stimulus Standard 2.0 — April 2021

class top : public component {
function<result<bit> ()> is last one {"is last one", result<bit>()};

class do something : public action {
attr<bit> last one {"last one"};
exec post solve {exec::post solve,
last one = comp<top>()->is last one()
}i

exec body {exec::body, "C",
"printf (\"Do Something\n\");"
bi
}i
type decl<do something> do something t;

class entry : public action {
action handle<do something> sl{"sl1l"};
activity act {

repeat while {sl, sl->last one != 0}

}i

}i

type decl<entry> entry t;

bi

Example 97—C++: repeat-while statement

13.4.3 foreach

The foreach construct iterates over the elements of a collection (see Syntax 62 and Syntax 63). See also
Example 98 and Example 99.

13.4.3.1 DSL syntax

activity foreach stmt ::=
foreach ([iterator_identifier :] expression [[index_identifier |]) activity stmt

Syntax 62—DSL: foreach statement

The following also apply:

a)
b)

©)

d)

expression shall be of a collection type (i.e., array, list, map or set).

The body of the foreach statement is a sequential block in which activity stmt is evaluated once for
each element in the collection.

iterator_identifier specifies the name of an iterator variable of the collection element type. Within
activity stmt, the iterator variable, when specified, is an alias to the collection element of the current
iteration.

index_identifier specifies the name of an index variable. Within activity stmt, the index variable,

when specified, corresponds to the element index of the current iteration.

1) For arrays and lists, the index variable shall be a variable of type int, ranging from 0 to one
less than the size of the collection variable, in that order.

2) For maps, the index variable shall be a variable of the same type as the map keys, and range
over the values of the keys. The order of key traversal is undetermined.

Copyright © 2021 Accellera. All rights reserved.
164

Portable Test and Stimulus Standard 2.0 — April 2021

3) For sets, an index variable shall not be specified.

e) Both the index and iterator variables, if specified, are implicitly declared within the foreach scope
and limited to that scope. Regular name resolution rules apply when the implicitly declared variables
are used within the foreach body. For example, if there is a variable in an outer scope with the same
name as the index variable, that variable is shadowed (masked) by the index variable within the
foreach body. The index and iterator variables are not visible outside the foreach scope.

f) Either an index variable or an iterator variable or both shall be specified. For a set, an iterator vari-
able shall be specified, but not an index variable.

13.4.3.2 C++ syntax

The corresponding C++ syntax for Syntax 62 is shown in Syntax 63.

pss::foreach
Defined in pss/foreach.h (C.29).
class foreach;
Iterate activity across array of non-rand and rand attributes.
Member functions

foreach (const attré& iter, const attr<vec<T>>& array,

const detail::Stmt& activity) :non-rand attributes (specializations provided for T = int and bit)
foreach (const attr& iter, const rand attr<vec<T>>& array,

const detail::Stmt& activity) :rand attributes (specializations provided for T = int and bit)

Syntax 63—C++: foreach statement

NOTE—Only iteration over arrays is supported in PSS/C++. foreach iteration over other collection types is not sup-
ported.

NOTE—In PSS/C++, the index and iteration variables must be explicitly declared in the containing scope of the foreach
loop.

13.4.3.3 Examples

action my actionl {
rand bit[4] wval;
//

}

action my test {
rand bit[4] in [0..7] a[l6];
my actionl actionl;

activity {
foreach (al[j]) {
actionl with {val <= al[jl;};

b

Example 98—DSL.: foreach statement

Copyright © 2021 Accellera. All rights reserved.
165

Portable Test and Stimulus Standard 2.0 — April 2021

class my actionl : public action {

class my test : public action {

rand attr<bit> val {"val", width(4)};

rand attr vec<bit> a {"a", 16, width(4), range(0,7)};
attr<int> 3 {"j"};

action handle<my actionl> actionl {"actionl"};
activity act {

foreach {j, a,
actionl.with (actionl->val <= al[j])

Example 99—C++: foreach statement

13.4.4 select

The select statement specifies a branch point in the traversal of the activity (see Syntax 64 and Syntax 65).

13.4.4.1 DSL syntax

activity_select stmt ::= select { select branch select branch { select branch } }

select_branch ::=[[(expression)][| expression | | :] activity stmt

Syntax 64—DSL: select statement

The following also apply:

a)
b)

d)

Intuitively, a select statement executes one out of a number of possible activities.

One or more of the activity stmts may optionally have a guard condition specified in parentheses
((). Guard condition expressions shall be of Boolean type. When the select statement is evaluated,
only those activity stmts whose guard condition evaluates to true or that do not have a guard condi-
tion are considered enabled.

Formally, each evaluation of a select statement corresponds to the evaluation of just one of the
select_branch statements. All scheduling requirements shall hold for the selected activity statement.

Optionally, all activity stmts may include a weight expression, which is a numeric expression that
evaluates to a positive integer. The probability of choosing an enabled activity stmt is the weight of
the given statement divided by the sum of the weights of all enabled statements. If the activity stmt
is an array of action handles, then the weight expression is assigned to each element of the array,
from which one element is selected and traversed.

If any activity stmt has a weight expression, then any statement without an explicit weight expres-
sion associated with it shall have a weight of 1.

It shall be illegal if no activity statement is valid according to the active constraint and scheduling
requirements and the evaluation of the guard conditions.

Copyright © 2021 Accellera. All rights reserved.
166

Portable Test and Stimulus Standard 2.0 — April 2021

13.4.4.2 C++ syntax

The corresponding C++ syntax for Syntax 64 is shown in Syntax 65.

pss::action::select
Defined in pss/action.h (see C.2).

template <class... R> class select;
Declare a select statement.

Member functions
template <class... R> select (R&&... /*detail::Stmt*/ r) :constructor
pss::action::branch

Defined in pss/action.h (see C.2).

class branch;
Specify a select branch.
Member functions

template <class R> branch (const R&... /*detail::Stmt*/ r)
template <class R> branch (const guard &g,
const R& /*detail::Stmt*/ r) :constructor
template <class R> branch (const guard &g, const weight &w,
const R& /*detail::Stmt*/ r) :constructor
template <class R> branch (const weight &w,
const R& /*detail::Stmt*/ r) :constructor

Syntax 65—C++: select statement

. constructor

13.4.4.3 Examples

In Example 100 and Example 101, the select statement causes the activity to select actionl or action?2
during each execution of the activity.

action my test {
my actionl actionl;
my action2 action2;
activity {
select {
actionl;
action?2;

Example 100—DSL: Select statement

Copyright © 2021 Accellera. All rights reserved.
167

Portable Test and Stimulus Standard 2.0 — April 2021

class my test : public action {
action handle<my actionl> actionl{"actionl"};
action handle<my action2> action2{"action2"};

activity act {
select {
actionl,
action?2

Example 101—C++: Select statement

In Example 102 and Example 103, the branch selected shall depend on the value of a when the select
statement is evaluated.

a) a==0 means that all three branches could be chosen, according to their weights.
1) actionl is chosen with a probability of 20%.
2) action2 is chosen with a probability of 30%.
3) action3 is chosen with a probability of 50%.
b) a in [1..3] meansthataction2 oraction3 is traversed according to their weights.
1) action2 is chosen with a probability of 37.5%.
2) action3 is chosen with a probability of 62.5%.
¢) a==4 means that only action3 is traversed.

action my test {
my actionl actionl;
my action2 action2;
my action3 action3;
rand int in [0..4] a;

activity {
select {
(a ==) [20]: actionl;
(a in [0..3])[30]: action2;

[50]: action3;

Example 102—DSL: Select statement with guard conditions and weights

Copyright © 2021 Accellera. All rights reserved.
168

Portable Test and Stimulus Standard 2.0 — April 2021

class my test : public action {
action handle<my actionl> actionl {"actionl"};
action handle<my action2> action2 {"action2"};
action handle<my action3> action3 {"action3"};
rand attr<int> a {"a", range(0,4)};

activity act {

select {
branch {guard(a == 0), weight (20), actionl},
branch {guard(in(a, range(0,3))), weight(30), action2},

branch {weight (50), action3}

Example 103—C++: Select statement with guard conditions and weights

In Example 104, the select statement causes the activity to select actionl or one element of action?2
during the execution of the activity. Since the weight expression of 2 is applied to each element of the
action? array, there is a 40% chance that either element of that array is chosen, and a 20% (weight of 1)
chance of choosing actionl.

action my test ({
my actionl actionl;
my action2 action2([2];

activity {

select {
actionl;
[2]: action2;

Example 104—DSL: Select statement with array of action handles

Copyright © 2021 Accellera. All rights reserved.
169

Portable Test and Stimulus Standard 2.0 — April 2021

13.4.5 if-else

The if-else statement introduces a branch point in the traversal of the activity (see Syntax 66 and Syntax 67).

13.4.5.1 DSL syntax

activity _if else stmt ::= if (expression) activity stmt [else activity stmt]

Syntax 66—DSL: if-else statement

The following also apply:

a)
b)

¢)

d)
e)

expression shall be of type bool.

Intuitively, an if-else statement executes some activity if a condition holds, and, otherwise (if speci-
fied), the alternative activity.

Formally, the if-else statement specifies the scheduling of the set of action executions per the evalu-
ation of the first activity stmt if expression evaluates to true or the second activity stmt (following
else) if present and expression evaluates to false.

The scheduling relationships need only be met for one branch for each evaluation of the activity.
The choice of values to rand attributes figuring in the expression shall be such that it yields legal
execution scheduling.

13.4.5.2 C++ syntax

The corresponding C++ syntax for Syntax 66 is shown in Syntax 67.

pss::if_then
Defined in pss/if_then.h (see C.31).
class if then;
Declare if-then activity statement.
Member functions
if then (const cond& a cond, const detail::Stmt& true expr) :constructor
pss::if then_else
Defined in pss/if_then.h (see C.31).
class if then else;
Declare if-then-else activity statement.
Member functions

if then else (const condé& a cond, const detail::Stmté& true expr,

const detail::Stmt& false expr) :constructor

Syntax 67—C++: if-else statement

Copyright © 2021 Accellera. All rights reserved.
170

Portable Test and Stimulus Standard 2.0 — April 2021

13.4.5.3 Examples

If the scheduling requirements for Example 105 and Example 106 required selection of the b branch, then
the value selected for x must be <= 5.

action my test ({
rand int in [1..10] x;
A a;
B b;
activity {
if (x > 5)
ay
else
b;

Example 105—DSL: if-else statement

class my test : public action {
rand attr<int> x { "x", range(1,10) };
action handle<A> a{"a"};
action handle b{"b"};

activity act {
if then else {
cond(x > 5), a, b

Example 106—C++: if-else statement

Copyright © 2021 Accellera. All rights reserved.
171

Portable Test and Stimulus Standard 2.0 — April 2021

13.4.6 match

The match statement specifies a multi-way decision point in the traversal of the activity that tests whether
an expression matches any of a number of other expressions and traverses one of the matching branches
accordingly (see Syntax 68 and Syntax 69).

13.4.6.1 DSL syntax

activity_match_stmt ::= match (match expression) { match_choice { match_choice } }
match_expression ::= expression
match_choice ::=

| open_range list | : activity stmt

| default : activity stmt

Syntax 68—DSL: match statement

The following also apply:

a)
b)

¢)
d)

e)
f)
2

When the match statement is executed, the match_expression is evaluated.

After the match_expression is evaluated, the open range list of each match_choice shall be com-
pared to the match_expression. open_range_lists are described in 9.5.9.1.

If there is exactly one match, then the corresponding branch shall be traversed.

If there is more than one match, then one of the matching match choices shall be randomly tra-
versed.

If there are no matches, then the default branch, if provided, shall be traversed.
The default branch is optional. There may be at most one default branch in the match statement.

As with a select statement, it shall be an error if no match_choice is valid according to the active
constraint and scheduling requirements and the evaluation of the match expression against the
match_choice open_range_lists.

Copyright © 2021 Accellera. All rights reserved.
172

Portable Test and Stimulus Standard 2.0 — April 2021

13.4.6.2 C++ syntax

The corresponding C++ syntax for Syntax 68 is shown in Syntax 69.

pss::match

Defined in pss/ctrl_flow.h (see C.21).
class match;

Declare a match statement.

Member functions
template <class... R> match (const cond é&expr,
R&&... /* choice|default choice */ stmts) :constructor
pss::choice

Defined in pss/ctrl_flow.h (see C.21).
class choice;

Declare a match choice statement.

Member functions
template <class... R> choice (const range &range expr,
R&&... /* detail::Stmt */ choice stmts) :constructor

pss::default_choice

Defined in pss/ctrl_flow.h (see C.21).
class default choice;

Declare a match default choice statement.

Member functions
template <class... R> default choice
R&&... /* detail::Stmt */ choice stmts) :constructor

Syntax 69—C++: match statement

Copyright © 2021 Accellera. All rights reserved.
173

Portable Test and Stimulus Standard 2.0 — April 2021

13.4.6.3 Examples

In Example 107 and Example 108, the match statement causes the activity to evaluate the data field
in security data.val and select a branch according to its value at each execution of the activity. If
the data field is equal to LEVEL2, actionl is traversed. If the data field is equal to LEVELS5, action?2 is
traversed. If the data field is equal to LEVEL3 or LEVELA4, then either actionl or action?2 is traversed
at random. For any other value of the data field, action3 is traversed.

action my test {
rand security data in_ security data;
my actionl actionl;
my action2 action2;
my action3 action3;
activity {
match (in_security data.val) {
[LEVEL2..LEVEL4] :
actionl;
[LEVEL3..LEVELS5] :
action2;
default:
action3;

Example 107—DSL: match statement

class my test : public action{...
rand attr<security data> in security data {"in security data"};
action handle<my action> actionl {"actionl"};
action handle<my action> action2 {"action2"};
action handle<my action> action3 {"action3"};

activity act {
match {
cond(in_ security data->val),
choice {
range (security level e::LEVEL2,
security level e::LEVEL4), actionl
}I
choice {
range (security level e::LEVEL3,
security level e::LEVEL5), action2
}I

default choice { action3 }

Example 108—C++: match statement

Copyright © 2021 Accellera. All rights reserved.
174

Portable Test and Stimulus Standard 2.0 — April 2021

13.5 Activity construction statements

13.5.1 replicate

The replicate statement is a generative activity statement interpreted as an in-place expansion of a specified
statement multiple times. The replicate statement does not introduce an additional layer of scheduling or
control flow. The execution semantics applied to the expanded statements depend on the context. In
particular, replicating a statement N times under a parallel statement executes the same statement N times in
parallel. Unlike a repeat statement, replicate provides a way to reference specific expansion instances from
above using a label array.

13.5.1.1 DSL syntax

activity replicate stmt ::=

replicate ([index_identifier : | expression) [label identifier | | :] labeled activity stmt

Syntax 70—DSL: replicate statement

The following also apply:

a)
b)

¢)

d)

2

expression shall be a positive numeric expression (int or bit).

The replicate statement expands in-place to labeled activity stmt replicated the number of times
specified in the expression. An optional index variable index_identifier may be specified that ranges
between 0 and one less than the iteration count.

The execution semantics of a replicate statement where expression evaluates to N are equivalent to
the execution semantics of N occurrences of labeled_activity stmt directly traversed in its enclosing
activity scope.

The number of replications must be known as part of the solve process. In other words, expression
may not contain an attribute that is assigned in the context of a runtime exec block (body/run_start/
run_end).

A label identifier may optionally be used to label the replicated statement in the form of a label
array. If used, each expanded occurrence of labeled_activity stmt becomes a named sub-activity
with the label label identifier[0] ... label identifier[N-1] respectively, where N is the number of
expanded occurrences. Reference can be made to labels and action handles declared under the repli-
cate and its nested scopes using array indexing on the label. (See more on hierarchical activity refer-
ences in 13.8).

Labels may be used to name sub-activities inside the scope of a replicate statement only if the
label identifier is specified. A label under a replicate statement without a named label array leads to
name conflict between the replicated sub-activities (see scoping rules for named sub-activities in
13.8.2).

Inside the scope of a replicate statement there shall not be an action traversal statement using an
action handle declared outside the replicate scope. Both anonymous action traversal and action
traversal of an action handle declared locally inside the replicate scope are allowed.

Copyright © 2021 Accellera. All rights reserved.
175

Portable Test and Stimulus Standard 2.0 — April 2021

13.5.1.2 C++ syntax

The corresponding C++ syntax for Syntax 70 is shown in Syntax 71.

pss::action::replicate
Defined in pss/action.h (see C.2).
class replicate;
Declare a replicate statement.
Member functions
replicate (const detail::AlgebExpré& count,
const detail::Stmt& activity) :declare areplicate (count) activity

replicate (const attr<int>& iter, const detail::AlgebExpr& count,
const detail::Stmt& activity) :declare areplicate (count) activity with iterator

Syntax 71—C++: replicate statement

13.5.1.3 Examples

In Example 109, the resulting execution is either two, three, or four parallel executions of the sequence A ->
B.

action my test ({
rand int in [2..4] count;
activity {
parallel {
replicate (count) {
do A;
do B;

Example 109—DSL: replicate statement

Copyright © 2021 Accellera. All rights reserved.
176

Portable Test and Stimulus Standard 2.0 — April 2021

Example 110 is the C++ equivalent of the previous example.

class my test : public action {
rand attr<int> count {"count", range(2,4)};
activity act {
replicate { count,
sequence {
action handle<aA>(),
action handle ()

Example 110—C++: replicate statement

In Example 111, the execution of action my test results in one execution of A as well as four executions
of B, all in the scope of the schedule statement, that is, invoked in any order that satisfies the scheduling
rules.

action my test {
activity {
schedule {
do A;
replicate (i: 4) do B with { size == i*10; };

Example 111—DSL: replicate statement with index variable

Example 111 can be rewritten in the following equivalent way to eliminate the replicate statement:

action my test ({
activity {

schedule {
do A;
do B with { size == 0*10; };
do B with { size == 1*10; };
do B with { size == 2*10; };
do B with { size == 3*10; };

Example 112—DSL: Rewriting previous example without replicate statement

Copyright © 2021 Accellera. All rights reserved.
177

Portable Test and Stimulus Standard 2.0 — April 2021

Example 113 illustrates the use of a replicate label array for unique hierarchical paths to specific expansion

instances. References are made to action handles declared and traversed under specific expansion instances
of a replicate statement from outside its scope.

action my compound {
rand int in [2..4] count;
activity {
parallel {
replicate (count) RL[]: {

A a;
B b;
ay
b;

}

if (RL[count-1].a.x ==0) { // 'a' of the last replicate expansion

do C;
}

}i

action my test ({
activity {
do my compound with {
RL[0].a.x == 10; // 'a' of the first replicate expansion

}i

Example 113—DSL: replicate statement with label array

In Example 114 a number of error situations are demonstrated. Note that label L in this example causes a
name conflict between the named sub-activities in the expansion of the replicate statement (see also 13.8.2).

action my test ({
A a;
activity {
schedule {
replicate (4) {
B b;
a; // Error - traversal of action handle
// declared outside the replicate scope

b; // OK — action handle declared inside the replicate scope
L: select { // Error - label causes name conflict in expansion
do A;
do B;

Example 114—DSL.: replicate statement error situations

Copyright © 2021 Accellera. All rights reserved.
178

Portable Test and Stimulus Standard 2.0 — April 2021

13.6 Activity evaluation with extension and inheritance

Compound actions support both type inheritance and type extension (see Clause 20). When type extension is
used to contribute one or more activities to an action type, the execution semantics are the same as if all the
contributed activities were scheduled along with all the activities from the initial definition.

In Example 115, action type entry traverses action type A. Extensions to action type entry include
activities that traverse action types B and C.

component pss_top {
action A { };
action B { };
action C { };

action entry {
activity {
do A;
}
}

extend action entry {
activity {
do B;
}
}

extend action entry {
activity {
do C;
}

Example 115—DSL: Extended action traversal

The semantics of activity in the presence of type extension state that all three activity blocks will be
traversed under an implied schedule block. In other words, Example 115 is equivalent to the hand-coded
example shown in Example 116.

Copyright © 2021 Accellera. All rights reserved.
179

Portable Test and Stimulus Standard 2.0 — April 2021

component pss_top {
action A { };
action B { };
action C { };

action entry {
activity {
schedule {
do A;
do B;
do C;

Example 116—DSL: Hand-coded action traversal

When a compound action inherits from another compound action, the activity declared in the inheriting
action shadows (masks) the activity declared in the base action. The “super;” statement can be used to
traverse the activity declared in the base action.

In Example 117, action base declares an activity that traverses action type A. Action ext1 inherits from
base and replaces the activity declared in base with an activity that traverses action type B. Action ext?2
inherits from base and replaces the activity declared in base with an activity that first traverses the
activity declared in base, then traverses action type C.

component pss_ top {
action A { }
action B { }
action C { }

action base {
activity {
do A;
}

action extl : base {
activity {
do B;
}

action ext2 : base {
activity {
super;
do C;

Example 117—DSL: Inheritance and traversal

Copyright © 2021 Accellera. All rights reserved.
180

Portable Test and Stimulus Standard 2.0 — April 2021

NOTE—PSS/C++ does not define a mechanism for referring to the set of activities declared in a super-type—in other
words, an equivalent to activity super stmt.

13.7 Symbols

To assist in reuse and simplify the specification of repetitive behaviors in a single activity, a symbol may be
declared to represent a subset of activity functionality (see Syntax 72 and Syntax 73). The symbol may be
used as a node in the activity.

A symbol may activate another symbol, but symbols are not recursive and may not activate themselves.

13.7.1 DSL syntax

symbol declaration ::= symbol symbol_identifier [(symbol paramlist)] { { activity stmt } }
symbol paramlist ::= [symbol param { , symbol param }]

symbol param ::= data_type identifier
Syntax 72—DSL: symbol declaration

13.7.2 C++ syntax
In C++, a symbol is created using a function that returns the sub-activity expression.

The corresponding C++ syntax for Syntax 72 is shown in Syntax 73.

pss::symbol
Defined in pss/symbol . h (see C.48).
symbol symbolName (parameters...) { return (...); }

Function declaration to return sub-activity.
Syntax 73—C++: symbol declaration

13.7.3 Examples

Example 118 and Example 119 depict using a symbol. In this case, the desired activity is a sequence of
choices between aN and bN, followed by a sequence of cIV actions. This statement could be specified in-
line, but for brevity of the top-level activity description, a symbol is declared for the sequence of aN and bN
selections. The symbol is then referenced in the top-level activity, which has the same effect as specifying
the a N/bN sequence of selects in-line.

Copyright © 2021 Accellera. All rights reserved.
181

Portable Test and Stimulus Standard 2.0 — April 2021

component entity {
action a { }
action b { }
action ¢ { }

action top {
a al, a2, a3;
b bl, b2, b3;
c cl, c2, c3;

symbol a or b {
select {al; bl; }
select {a2; b2; }
select {a3; b3; }

activity {
a_or b;
cl;
c2;
c3;

}

}
}

Example 118—DSL: Using a symbol
class A : public action { ... };
class B : public action { ... };
class C : public action { ... };

class top : public action {
action handle<A> al{"al"}, a2{"a2"}, a3{"a3"};
action handle bl{"bl"}, b2{"b2"}, b3{"b3"};
action handle<C> cl{"cl"}, c2{"c2"}, c3{"c3"};
symbol a or b () {
return (
sequence {
select {al, bl},
select {a2, b2},
select {a3, b3}
}
);
}
activity a { a or b(), cl, c2, c3 };

b

Example 119—C++: Using a symbol

Example 120 and Example 121 depict using a parameterized symbol.

Copyright © 2021 Accellera. All rights reserved.
182

Portable Test and Stimulus Standard 2.0 — April 2021

component entity {

action a { }
action b { }
action ¢ { }
action top {
a al, a2, as3;
b bl, b2, b3;
c cl, c2, c3;
symbol ab or ba (a aa, b bb) {
select {
{ aa; bb; }
{ bb; aa; }

}

activity {
ab _or ba(al,bl);
ab or ba(az2,b2);
ab or ba(a3,b3);

cl;

c2;

c3;

}
}
}
Example 120—DSL: Using a parameterized symbol

class A : public action { ... };
class B : public action { ... };
class C : public action { ... };

class top : public action {...

action handle<A> al{"al"}, a2{"a2"}, a3{"a3"};
action handle bl{"bl"}, b2{"b2"}, b3{"b3"};
action handle<C> cl{"cl"}, c2{"c2"}, c3{"c3"};

symbol ab or ba (const action handle<A> &aa,
const action handle &bb)
{
return (
select {
sequence {aa, bb},
sequence {bb, aa},
}
);

activity a {
ab_or ba(al, bl),
ab or ba(az, b2),
ab or ba (a3, b3),
cl, c2, c3

b

Example 121—C++: Using a parameterized symbol

Copyright © 2021 Accellera. All rights reserved.
183

Portable Test and Stimulus Standard 2.0 — April 2021

13.8 Named sub-activities

Sub-activities are structured elements of an activity. Naming sub-activities is a way to specify a logical tree
structure of sub-activities within an activity. This tree serves for making hierarchical references, both to
action-handle variables declared in-line, as well as to the activity statements themselves. The hierarchical
paths thus exposed abstract from the concrete syntactic structure of the activity, since only explicitly labeled
statements constitute a new hierarchy level.

NOTE—Labeled activity statements are not supported in PSS/C++.

13.8.1 DSL syntax
A named sub-activity is declared by labeling an activity statement, see Syntax 47.
13.8.2 Scoping rules for named sub-activities

Activity statement labels shall be unique in the context of the containing named sub-activity—the nearest
lexically-containing statement which is labeled. Unlabeled activity statements do not constitute a separate
naming scope for sub-activities.

Note that labeling activity statements inside the scope of a replicate statement leads to name conflicts
between the expanded sub-activities, unless a label array is specified (see 13.5.1.1). With a replicate label
array, each expanded named sub-activity has a unique hierarchical path.

In Example 122, some activity statements are labeled while others are not. The second occurrence of label
L2 is conflicting with the first because the if statement under which the first occurs is not labeled and hence
is not a separate naming scope for sub-activities.

action A {};

action B {
int x;
activity {
Ll: parallel { // 'L1l' is 1lst level named sub-activity
if (x > 10) {
L2: { // 'L2' is 2nd level named sub-activity
A a;
ay

A a; // OK - this is a separate naming scope for variables
ay

}

L2: { // Error - this 'L2' conflicts with 'L2' above
A a;
ay

Example 122—DSL: Scoping and named sub-activities

Copyright © 2021 Accellera. All rights reserved.
184

Portable Test and Stimulus Standard 2.0 — April 2021

13.8.3 Hierarchical references using named sub-activity

Named sub-activities, introduced through labels, allow referencing action-handle variables using
hierarchical paths. References can be made to a variable from within the same activity, from the compound
action top-level scope, and from outside the action scope.

A hierarchical activity path uses labels in a way similar to variables of struct and array types. The dot
operator (.) in the case of simple labels, or the indexing operator ([]) and other array operators in the case of
label arrays (introduced by replicate statements), may be used to reference named sub-activity blocks.

Only action handles declared directly under a labeled activity statement can be accessed outside their direct
lexical scope. Action handles declared in an unnamed activity scope cannot be accessed from outside that
scope.

Note that the top activity scope is unnamed. For an action handle to be directly accessible in the top-level
action scope, or from outside the current scope, it shall be declared at the top-level action scope.

In Example 123, action B declares action-handle variables in labeled activity statement scopes, thus making
them accessible from outside by using hierarchical paths. action C uses hierarchical paths to constrain the
sub-actions of its sub-actions b1 and b2.

Copyright © 2021 Accellera. All rights reserved.
185

Portable Test and Stimulus Standard 2.0 — April 2021

action A { rand int x; };

action B {
A a;
activity {
ay
my seq: sequence {
A a;
ay
parallel {
my rep: repeat (3) {
A a;
ay
}i
sequence {
A a; // this 'a' is declared in unnamed scope

a; // can't be accessed from outside
}i
}i
}i

}i
}i
action C {

B bl, b2;

constraint bl.a.x == 1;

constraint bl.my seqg.a.x == 2;

constraint bl.my seqg.my rep.a.x == 3; // applies to all three iterations

// of the loop
activity {

bl;
b2 with { my seq.my rep.a.x == 4; }; // likewise
}
}i

Example 123—DSL: Hierarchical references and named sub-activities

Copyright © 2021 Accellera. All rights reserved.
186

Portable Test and Stimulus Standard 2.0 — April 2021

13.9 Explicitly binding flow objects

Input and output fields of actions may be explicitly connected to actions using the bind statement (see
Syntax 74 and Syntax 75). It states that the fields of the respective actions reference the same object—the
output of one action is the input of another.

13.9.1 DSL syntax

activity bind stmt ::= bind hierarchical id activity bind item or list
activity bind_item or list ::=
hierarchical _id
| { hierarchical id list }
Syntax 74—DSL: bind statement

The following also apply:
a) Reference fields that are bound shall be of the same object type.

b) Explicit binding shall conform to the scheduling and connectivity rules of the respective flow object
kind defined in 14.4.

c) Explicit binding can only associate reference fields that are statically bound to the same pool
instance (see 16.4).

d) The order in which the fields are listed does not matter.
13.9.2 C++ syntax

The corresponding C++ syntax for Syntax 74 is shown in Syntax 75.

pss::bind
Defined in pss/bind.h (see C.6).
class bind;
Explicit binding of action inputs and outputs.
Member functions

template <class... R> bind (const R& /* input|output]|lock|share */ io items)
: constructor

Syntax 75—C++: bind statement

Copyright © 2021 Accellera. All rights reserved.
187

Portable Test and Stimulus Standard 2.0 — April 2021

13.9.3 Examples

Examples of binding are shown in Example 124 and Example 125.

component top{
buffer B {rand int a;};
action P1 {
output B out;
}i
action P2 {
output B out;
}i
action C {
input B inp;
}i

pool B B p;
bind B {*};

action T {

Pl pl;
P2 p2;
C c;
activity {
pl;
r2;
Cy
bind pl.out c.inp; // c.inp.a == pl.out.a

b

Example 124—DSL: bind statement

Copyright © 2021 Accellera. All rights reserved.
188

Portable Test and Stimulus Standard 2.0 — April 2021

class B : public buffer {
rand attr<int> a {"a"};
}i

class Pl : public action {
output out {"out"};
}i

class P2 : public action {
output out {"out"};
}i

class C : public action {
input inp {"inp"};
}i

class T : public action {
action handle<P1l> pl {"pl"};
action handle<P2> p2 {"p2"};
action handle<C> c¢ {"c"};

activity act {
pl, p2, c,
bind {pl->out, c->inp} // c.inp.a == pl.out.a
}i
}i

Example 125—C++: bind statement

13.10 Hierarchical flow object binding

As discussed in 14.4, actions, including compound actions, may declare inputs and/or outputs of a given
flow object type. When a compound action has inputs and/or outputs of the same type and direction as its
sub-action and which are statically bound to the same pool (see 16.4), the bind statement may be used to
associate the compound action’s input/output with the desired sub-action input/output. The compound
action’s input/output shall be the first argument to the bind statement.

The outermost compound action that declares the input/output determines its scheduling implications, even
if it binds the input/output to that of a sub-action. The binding to a corresponding input/output of a sub-
action simply delegates the object reference to the sub-action.

In the case of a buffer object input to the compound action, the action that produces the buffer object must
complete before the activity of the compound action begins, regardless of where within the activity the sub-
action to which the input buffer is bound begins. Similarly, the compound action’s activity shall complete
before the compound action’s output buffer is available, regardless of where in the compound action’s
activity the sub-action that produces the buffer object executes. The corollary to this statement is that no
other sub-action in the compound action’s activity may have an input explicitly hierarchically bound to the
compound action’s buffer output object. Similarly, no sub-action in the compound action’s activity may
have an output that is explicitly hierarchically bound to the compound action’s input object. Consider
Example 126 and Example 127.

Copyright © 2021 Accellera. All rights reserved.
189

Portable Test and Stimulus Standard 2.0 — April 2021

action sub_a {
input data buf din;
output data buf dout;
}

action compound a {
input data buf data in;
output data buf data out;
sub a al, a2;
activity {
al;
a2;
bind al.dout a2.din;
bind data in al.din;
bind data out a2.dout;

// The following bind statements would be illegal

// bind data in al.dout; //

// // compound action’s input
// bind data out a2.din; //

// // compound action’s output

// hierarchical
// hierarchical bind

sub-action output may not be bound to

sub-action input may not be bound to

bind

Example 126—DSL: Hierarchical flow binding for buffer objects

class sub a public action {...
input<data buf> din{"din"};
output<data buf> dout{"dout"};
}i

class compound a public action {...
input<data buf> data in{"data in"};
output<data buf> data out{"data out"};

action handle<sub a> al{"al"},

activity act{

az{uazn};

// hierarchical bind
// hierarchical bind
would be illegal

al,
az,
bind bl {al->dout, a2->din};
bind b2 {data in , al->din};
bind b3 {data out, a2->dout};
// The following bind statements
// bind b4 {data_in , al->dout}; //
// //
// bind b5 {data out, a2->din}; //
// //

sub-action output may not be bound to
compound action’s input

sub-action input may not be bound to
compound action’s output

Example 127—C++: Hierarchical flow binding for buffer objects

For stream objects, the compound action’s activity shall execute in parallel with the action that produces the
input stream object to the compound action or consumes the stream object output by the compound action. A
sub-action within the activity of a compound action that is bound to a stream input/output of the compound

Copyright © 2021 Accellera. All rights reserved.
190

Portable Test and Stimulus Standard 2.0 — April 2021

action shall be an initial action in the activity of the compound action. Consider Example 128 and
Example 129.

action sub_a {
input data str din;
output data buf dout;
}

action compound a {
input data str data in;
output data buf data out;
sub _a al, a2;
activity {
al;
az;
bind data in al.din; // hierarchical bind
// The following bind statement would be illegal
// bind data in a2.din; // a2 is not scheduled in parallel with compound a

Example 128—DSL: Hierarchical flow binding for stream objects

class sub_a : public action {...
input<data str> din{"din"};
output<data buf> dout{"dout"};
i

class compound a : public action {...
input<data str> data in{"data in"};
output<data buf> data out{"data out"};
action handle<sub a> al{"al"}, a2{"a2"};

activity act{
al,
az,
bind b2 {data_in, al->din}; // hierarchical bind
// The following bind statement would be illegal
// bind b4 {data in, a2->din}; // a2 is not scheduled in parallel with
// compound a

Example 129—C++: Hierarchical flow binding for stream objects

For state object outputs of the compound action, the activity shall complete before any other action may
write to or read from the state object, regardless of where in the activity the sub-action executes within the
activity. Only one sub-action may be bound to the compound action’s state object output. Any number of
sub-actions may have input state objects bound to the compound action’s state object input.

Copyright © 2021 Accellera. All rights reserved.
191

Portable Test and Stimulus Standard 2.0 — April 2021

13.11 Hierarchical resource object binding

As discussed in 15.2, actions, including compound actions, may claim a resource object of a given type.
When a compound action claims a resource of the same type as its sub-action(s) and where the compound
action and the sub-action are bound to the same pool, the bind statement may be used to associate the
compound action’s resource with the desired sub-action resource. The compound action’s resource shall be
the first argument to the bind statement.

The outermost compound action that claims the resource determines its scheduling implications. The
binding to a corresponding resource of a sub-action simply delegates the resource reference to the sub-
action.

The compound action’s claim on the resource determines the scheduling of the compound action relative to
other actions and that claim is valid for the duration of the activity. The sub-actions’ resource claim
determines the relative scheduling of the sub-actions in the context of the activity. In the absence of the
explicit resource binding, the compound action and its sub-action(s) claim resources from the pool to which
they are bound. Thus, it shall be illegal for a sub-action to lock the same resource instance that is locked by
the compound action.

A resource locked by the compound action may be bound to any resource(s) in the sub-action(s). Thus, only
one sub-action that locks the resource reference may execute in the activity at any given time and no sharing
sub-actions may execute at the same time. If the resource that is locked by the compound action is bound to
a shared resource(s) in the sub-action(s), there is no further scheduling dependency.

A resource shared by the compound action may only be bound to a shared resource(s) in the sub-action(s).
Since the compound action’s shared resource may also be claimed by another action, there is no way to
guarantee exclusive access to the resource by any sub-action; so, it shall be illegal to bind a shared resource
to a locking sub-action resource.

In Example 130 and Example 131, the compound action locks resources cr1kA and crlkB, so no other
actions outside of compound _a may lock either resource for the duration of the activity. In the context of
the activity, the bound resource acts like a resource pool of the given type of size=1.

action sub_a {
lock reslk r rlkA, rlkB;
share resshr r rshA, rshB;

}

action compound a {
lock reslk r crlkA, crlkB;
share resshr r crshA, crshB;
sub_a al, a2;
activity {
schedule {
al;
a2;

bind crlkA {al.rlkA, a2.rlkA};
bind crshA {al.rshA, a2.rshA};
bind crlkB {al.rlkB, a2.rshB};
bind crshB {al.rshB, a2.rlkB}; //illegal

Example 130—DSL: Hierarchical resource binding

Copyright © 2021 Accellera. All rights reserved.
192

Portable Test and Stimulus Standard 2.0 — April 2021

class sub_a : public action {...
lock <reslk r> rlkA{"rlkA"}, rlkB{"rlkB"};
share <resshr r> rshA{"rshA"}, rshB{"rshB"};

}r

class compound a : public action {...
lock <reslk r> crlkA{"crlkA"}, crlkB{"crlkB"};
share <resshr r> crshA{"crshA"}, crshB{"crshB"};
action handle<sub_a> al{"al"}, a2{"a2"};

activity act {
schedule {
al,
a2

bind bl {crlkA, al->rlkA, a2->rlkA};
bind b2 {crshZA, al->rshA, a2->rshA};
bind b3 {crlkB, al->rlkB, a2->rshB};
bind b4 {crshB, al->rshB, a2->rlkB}; //illegal

Example 131—C++: Hierarchical resource binding

Copyright © 2021 Accellera. All rights reserved.
193

Portable Test and Stimulus Standard 2.0 — April 2021

14. Flow objects

A flow object represents incoming or outgoing data/control flow for actions, or their pre-condition and post-
condition. A flow object can have two modes of reference by actions: input and output.

14.1 Buffer objects

Buffer objects represent data items in some persistent storage that can be written and read. Once their
writing is completed, they can be read as needed. Typically, buffer objects represent data or control buffers
in internal or external memories. See Syntax 76 and Syntax 77.

14.1.1 DSL syntax

buffer identifier [template param_decl list | [struct_super spec] { { struct_body item } }
Syntax 76—DSL: buffer declaration

The following also apply:

a) Note that the buffer type does not imply any specific layout in memory for the specific data being
stored.

b) Buffer types can inherit from previously defined structs or buffers.

c) Buffer object reference fields can be declared under actions using the input or output modifier (see
14.4). Instance fields of buffer type (taken as a plain-data type) can only be declared under higher-
level buffer types, as their data attribute.

d) A buffer object shall be the output of exactly one action. A buffer object may be the input of any
number (zero or more) of actions.

e) Execution of a consuming action that inputs a buffer shall not begin until after the execution of the
producing action completes (see Figure 2).

14.1.2 C++ syntax

The corresponding C++ syntax for Syntax 76 is shown in Syntax 77.

pss::buffer

Defined in pss/buffer.h (see C.8).
class buffer;

Base class for declaring a buffer flow object.

Member functions

buffer (const scope& name) :constructor
virtual void pre_ solve() :in-line pre_solve exec block
virtual void post_solve() :in-line post_solve exec block

Syntax 77—C++: buffer declaration

Copyright © 2021 Accellera. All rights reserved.
194

Portable Test and Stimulus Standard 2.0 — April 2021

14.1.3 Examples

Examples of buffer objects are show in Example 132 and Example 133.

struct mem segment s {...};
buffer data buff s {
rand mem_segment s seg;

b

Example 132—DSL: buffer object

struct mem segment s : public structure { ... };

struct data buff s : public buffer ({
PSS CTOR (data buff s, buffer);
rand attr<mem segment s> seg {"seg"};
bi
type decl<data buff s> data buff s decl;

Example 133—C++: buffer object

14.2 Stream objects

Stream objects represent transient data or control exchanged between actions during concurrent activity,
e.g., over a bus or network, or across interfaces. They represent data item flow or message/notification
exchange. See Syntax 78 and Syntax 79.

14.2.1 DSL syntax

stream identifier [template param_decl list] [struct_super spec] { { struct_body item } }

Syntax 78—DSL: stream declaration

The following also apply:
a) Stream types can inherit from previously defined structs or streams.

b) Stream object reference fields can be declared under actions using the input or output modifier (see
14.4). Instance fields of stream type (taken as a plain-data type) can only be declared under higher-
level stream types, as their data attribute.

c) A stream object shall be the output of exactly one action and the input of exactly one action.

d) The outputting and inputting actions shall begin their execution at the same time, after the same pre-
ceding action(s) completes. The outputting and inputting actions are said to run in parallel. The
semantics of parallel execution are discussed further in 13.3.4.

Copyright © 2021 Accellera. All rights reserved.
195

Portable Test and Stimulus Standard 2.0 — April 2021

14.2.2 C++ syntax

The corresponding C++ syntax for Syntax 78 is shown in Syntax 79.

pss::stream

Defined in pss/stream.h (see C.46).
class stream;

Base class for declaring a stream flow object.

Member functions

stream (const scope& name) :constructor
virtual void pre_ solve () :in-line pre_solve exec block
virtual void post_solve () :in-line post_solve exec block

Syntax 79—C++: stream declaration

14.2.3 Examples

Examples of stream objects are show in Example 134 and Example 135.

struct mem segment s {...};
stream data stream s {
rand mem_segment s seg;

b

Example 134—DSL.: stream object

struct mem segment s : public structure {...};

struct data stream s : public stream ({
PSS CTOR(data stream s, stream);
rand attr<mem segment s> seg {"seg"};
i

type decl<data stream s> data stream s decl;

Example 135—C++: stream object

Copyright © 2021 Accellera. All rights reserved.
196

Portable Test and Stimulus Standard 2.0 — April 2021

14.3 State objects

State objects represent the state of some entity in the execution environment at a given time. See Syntax 80
and Syntax 81.

14.3.1 DSL syntax

state identifier [template param decl list] [struct super spec | { { struct body item } }

Syntax 80—DSL: state declaration

The following also apply:

a)
b)

¢)

d)

2

h)

)
k)

D

The writing and reading of states in a scenario is deterministic. With respect to a pool of state
objects, writing shall not take place concurrently to either writing or reading.

The initial state of a given type is represented by the built-in Boolean initial attribute. See 16.6
for more on state pools (and initial).

State object reference fields can be declared under actions using the input or output modifier (see
14.4). Instance fields of state type (taken as a plain-data type) can only be declared under higher-
level state types, as their data attribute. It shall be illegal to access the built-in attributes initial
and prev on an instance field.

State types can inherit from previously defined structs or states.

An action that has an input or output of state object type operates on a pool of the corresponding
state object type to which its field is bound. Static pool bind directives are used to associate the
action with the appropriate state object pool (see 16.4).

At any given time, a pool of state object type contains a single state object. This object reflects the
last state specified by the output of an action bound to the pool. Prior to execution of the first action
that outputs to the pool, the object reflects the initial state specified by constraints involving the
initial built-in field of state object types.

The built-in variable prev is a reference from this state object to the previous one in the pool. prev
has the same type as this state object. The value of prev is unresolved in the context of the initial
state object. In the context of an action, prev may only be referenced relative to a state object out-
put. In all cases, only a single level of prev reference is supported, i.e.,
out_s.prev.prev.prev shall be illegal.

An action that inputs a state object reads the current state object from the state object pool to which
it is bound.

An action that outputs a state object writes to the state object pool to which it is bound, updating the
state object in the pool.

Execution of an action that outputs a state object shall complete at any time before the execution of
any inputting action begins.

Execution of an action that outputs a state object to a pool shall not be concurrent with the execution
of any other action that either outputs or inputs a state object from that pool.

Execution of an action that inputs a state object from a pool may be concurrent with the execution of
any other action(s) that input a state object from the same pool, but shall not be concurrent with the
execution of any other action that outputs a state object to the same pool.

Copyright © 2021 Accellera. All rights reserved.
197

Portable Test and Stimulus Standard 2.0 — April 2021

14.3.2 C++ syntax

The corresponding C++ syntax for Syntax 80 is shown in Syntax 81.

pss::state

Defined in pss/state.h (see C.45).
class state;

Base class for declaring a stream flow object.

Member functions
state (const scope& name) :constructor
rand attr<bool> initial :trueifin initial state
virtual void pre_ solve () :in-line pre_solve exec block
virtual void post_solve() :in-line post_solve exec block

Syntax 81—C++: state declaration

14.3.3 Examples

Examples of state objects are shown in Example 136 and Example 137.

enum mode e {...};
state config s {
rand mode e mode;

b

Example 136—DSL: state object

PSS ENUM (mode e,...);

struct config s : public state {
PSS CTOR (config s, state);
rand attr<mode e> mode {"mode"};
bi
type decl<config s> config s decl;

Example 137—C++: state object

Copyright © 2021 Accellera. All rights reserved.
198

Portable Test and Stimulus Standard 2.0 — April 2021

14.4 Using flow objects

Flow object references are specified by actions as inputs or outputs. These references are used to specify
rules for combining actions in legal scenarios. An action that outputs a flow object is said to produce that
object and an action that inputs a flow object is said to consume the object. See Syntax 82, Syntax 83 and

Syntax 84.

A consumer may consume flow objects that are produced by multiple producers, and vice versa.

An action can produce or consume a fixed-size array of flow objects. Declaring such an array is equivalent
to declaring multiple distinct object reference fields of the same type.

14.4.1 DSL syntax

action_field declaration ::=
attr_field
| activity data field
| action_handle declaration
| object ref field declaration
object_ref field declaration ::=
flow ref field declaration
| resource ref field declaration
flow_ref field declaration ::=
(input | output) flow_object type object ref field {, object ref field } ;
flow_object type ::=
buffer type identifier
| state type identifier
| stream_type_identifier
object_ref field ::= identifier [array dim]

array _dim ::= [constant_expression |

Syntax 82—DSL: Flow object reference

The following apply for arrays of flow object references:

a)

b)

¢)

d)

Individual elements in the array may be referenced by using the array name and the element index in
square brackets.

A flow object array is specified as entirely input or entirely output. The mode cannot be specified
separately for an individual element of the array.

The different elements in an array may be bound to different pools. Explicit binding must be used
for array elements associated with different pools. Default (type-based) pool binding applies to all
elements of an object-reference array, and therefore cannot be used for this purpose (see 16.4 for
more details).

For an array of state object references, each object reference must be bound to a different state pool,
since a state pool can store only one state object at a time (see 14.3.1 and Example 154).

Copyright © 2021 Accellera. All rights reserved.
199

Portable Test and Stimulus Standard 2.0 — April 2021

14.4.2 C++ syntax

Action input and outputs are defined using the input (see Syntax 83) and output (see Syntax 84) classes
respectively.

The corresponding C++ syntax for Syntax 82 is shown in Syntax 83 and Syntax 84.

NOTE—PSS/C++ does not support arrays of object references.

pss::input
Defined in pss/input.h (see C.34).
template <class T> class input;
Declare an action input.
Member functions
input (const scopeé& name) :constructor
T* operator->() :accessunderlying input type

T& operator* () :access underlying input type
Syntax 83—C++: action input

pss::output

Defined in pss/output.h (see C.37).
template <class T> class output;

Declare an action input.

Member functions

output (const scopeé& name) :constructor
T* operator->() :accessunderlying output type
T& operator* () :accessunderlying output type

Syntax 84—C++: action output

Copyright © 2021 Accellera. All rights reserved.
200

Portable Test and Stimulus Standard 2.0 — April 2021

14.4.3 Examples

Examples of using buffer flow objects are shown in Example 138 and Example 139.

struct mem segment s {...};
buffer data buff s {

rand mem segment_ s seg;
i
action cons mem a {

input data buff s in data;
i
action prod mem a {

output data buff s out data;
i

Example 138—DSL: buffer flow object

For a timing diagram showing the relative execution of two actions sharing a buffer object, see Figure 2.

The corresponding C++ example for Example 138 is shown in Example 139.

struct mem segment s : public structure { ... };

struct data buff s : public buffer ({
rand attr<mem segment s> seg {"seg"};

b

struct cons mem a : public action { ...
input <data buff s> in data ({"in data"};
i

struct prod mem a : public action { .
output<data buff s> out data {"out data"};
bi

Example 139—C++: buffer flow object

Examples of using stream flow objects are shown in Example 140 and Example 141.

struct mem segment s {...};
stream data stream s {

rand mem segment_ s seg;
i
action cons mem a {

input data stream s in data;
i
action prod mem a {

output data stream s out data;

b

Example 140—DSL: stream flow object

Copyright © 2021 Accellera. All rights reserved.
201

Portable Test and Stimulus Standard 2.0 — April 2021

For a timing diagram showing the relative execution of two actions sharing a stream object, see Figure 3.

The corresponding C++ example for Example 140 is shown in Example 141.

struct mem segment s : public structure { ... };

struct data stream s : public stream ({
rand_attr<mem_segment s> seg {"seg"};

b

struct cons mem a : public action {
input<data stream s> in data {"in data"};

bi

type decl<cons mem a> cons mem a decl;

struct prod mem a : public action {
output<data stream s> out data {"out data"};
i

Example 141—C++: stream flow object

In Example 142, four buffer objects are produced, one by action prod_1b and three by action prod_3b,
and five buffer objects are consumed, one by cons_1b, two by cons 2b 0, and two by cons_2b 1.
All the buffer objects are produced and consumed from the same pool, buff£ p. All the buffer objects
have a random integer attribute, int attr. Consumer objectsin cons 2b 0 constrain their int _attr
attribute to 3, while in cons_2b 1, the first consumer object’s int attr attribute is constrained to be
greater than or equal to 2, and the second is constrained to be less than 3. prod_3b’s producer objects
int_ attr attributes are all constrained to 3.

There is an explicit bind to bind the second consumer object in cons_2b 1 with the first producer object
in prod 3b, The explicit bind constraint will fail because int attr in the consumer object is
constrained to be less than 3, while int attr in the producer object is constrained to 3. If we remove the
explicit bind, then that same consumer object will bind to the producer prod 1b’s output object because
its int_attr is constrained to be less than 3.

Copyright © 2021 Accellera. All rights reserved.
202

Portable Test and Stimulus Standard 2.0 — April 2021

buffer data buff {
rand int int attr;

}i

component flow object array c {
pool data buff buff p;
bind buff p *;

action prod buff a {
output data buff out 1 buff;
bi

action prod 3 buff a {
output data buff out 3 buff [3];
b

action cons buff a {
input data buff in 1 buff;
b

action cons 2 buff a {
input data buff in 2 buff [2];
bi

action activity a {
prod buff a prod 1b;
prod 3 buff a prod 3b;

cons_buff a cons_1b;
cons_2 buff a cons 2b 0;

cons 2 buff a cons 2b 1;

activity {

prod 1lb with {out 1 buff.int attr == 1;};
prod 3b with {

foreach (b:out 3 buff) { b.int attr == 3;};
}i
cons_1b with { in 1 buff.int attr == 3;};
cons_2b 0;

constraint { foreach (b: cons 2b 0.in 2 buff) {
b.int attr == 3;
Yidi

cons 2b 1 with {
in 2 buff[0].int attr >= 2 && in 2 buff[l].int attr < 3;};
bind cons 2b 1.in 2 buff[l] prod 3b.out 3 buff[0]; // conflict
b
bi

}i

Example 142—DSL: Multiple producers/consumers using the same buffer pool

An example of use of an array of state object references can be seen in .Example 154.

Copyright © 2021 Accellera. All rights reserved.
203

Portable Test and Stimulus Standard 2.0 — April 2021

15. Resource objects

Resource objects represent computational resources available in the execution environment that may be
assigned to actions for the duration of their execution.

15.1 Declaring resource objects

Resource types can inherit from previously defined structs or resources. See Syntax 85 and Syntax 86.
Resources reside in pools (see Clause 16) and may be claimed by specific actions.

15.1.1 DSL syntax

resource identifier [template param_decl list | [struct_super_spec] { { struct_body item } }

Syntax 85—DSL: resource declaration

The following also apply:

a) Resources have a built-in non-negative integer attribute called instance_id. This attribute rep-
resents the relative index of the resource instance in the pool. The value of instance_id ranges
from 0 to pool size — 1. See also 16.5.

b) There can only be one resource object per instance_id value for a given pool. Thus, actions ref-
erencing a resource object of some type with the same instance_id are necessarily referencing
the very same object and agreeing on all its properties.

c) Resource object reference fields can be declared under actions using the lock or share modifier (see
15.2). Instance fields of resource type (taken as a plain-data type) can only be declared under higher-
level resource types, as their data attribute.

15.1.2 C++ syntax

The corresponding C++ syntax for Syntax 85 is shown in Syntax 86.

pss::resource

Defined in pss/resource.h (see C.42).
class resource;

Base class for declaring a resource.

Member functions
resource (const scope& name) :constructor
virtual void pre_ solve() :in-line pre_solve exec block

virtual void post_solve () :in-line post_solve exec block
rand_attr<int> instance_id : getresource instance id

Syntax 86—C++: resource declaration

Copyright © 2021 Accellera. All rights reserved.
204

Portable Test and Stimulus Standard 2.0 — April 2021

15.1.3 Examples

For examples of how to declare a resource, see Example 143 and Example 144.

resource DMA channel s {
rand bit[3:0] priority;
bi

Example 143—DSL: Declaring a resource

The corresponding C++ example for Example 143 is shown in Example 144.

struct DMA channel s : public resource ({

PSS CTOR(DMA channel s, resource);

rand attr<bit> priority {"priority", width (3,0)};
i
type decl<DMA channel s> DMA channel s decl;

Example 144—C++: Declaring a resource

15.2 Claiming resource objects

Resource objects may be locked or shared by actions. This is expressed by declaring the resource reference
field of an action. See Syntax 87, Syntax 88 and Syntax §9.

An action can claim a fixed-size array of resource objects. Declaring such an array is equivalent to declaring
multiple distinct object reference fields of the same type.

15.2.1 DSL syntax

action_field declaration ::=
attr_field
| activity data field
| action_handle declaration
| object ref field declaration
object ref field declaration ::=
flow ref field declaration
| resource ref field declaration
resource ref field declaration ::=
(lock | share) resource_object type object ref field {, object ref field } ;
resource_object_type ::= resource_type_identifier
object ref field ::=identifier [array dim]

array dim ::= [constant expression |

Syntax 87—DSL: Resource object reference

Copyright © 2021 Accellera. All rights reserved.
205

Portable Test and Stimulus Standard 2.0 — April 2021

lock and share are modes of resource use by an action. They serve to declare resource requirements of the
action and restrict legal scheduling relative to other actions. Locking excludes the use of the resource
instance by another action throughout the execution of the locking action and sharing guarantees that the

resource is not locked by another action during its execution.

In a PSS-generated test scenario, no two actions may be assigned the same resource instance if they overlap
in execution time and at least one is locking the resource. In other words, there is a strict scheduling
dependency between an action referencing a resource object in lock mode and all other actions referencing

the same resource object instance.

The following apply for arrays of resource object references:

a) Individual elements in the array may be referenced by using the array name and the element index in

square brackets.

b) A resource object array is specified as entirely locked or entirely shared. The mode cannot be speci-

fied separately for an individual element of the array.

¢) All elements of a resource object array must be bound to the same pool.

d) When claiming an array of resource objects, the pool size must be at least as large as the array, in

order to accommodate all distinct resource claims.

15.2.2 C++ syntax

The corresponding C++ syntax for Syntax 87 is shown in Syntax 88 and Syntax 89.

NOTE—PSS/C++ does not support arrays of object references.

pss::lock

Defined in pss/lock.h (see C.36).
template <class T> class lock;

Claim a locked resource.

Member functions

lock (const scope& name) :constructor
T* operator->() :access underlying type
T& operator* () :accessunderlying type

Syntax 88—C++: Claim a locked resource

Copyright © 2021 Accellera. All rights reserved.
206

Portable Test and Stimulus Standard 2.0 — April 2021

pss::share
Defined in pss/share.h (see C.44).
template <class T> class share;
Claim a shared resource.
Member functions
share (const scopeé& name) :constructor

T* operator->() :accessunderlying type
T& operator* () :accessunderlying type

Syntax 89—C++: Claim a shared resource

15.2.3 Examples

Example 145 and Example 146 demonstrate resource claims in lock and share mode. Action
two chan transfer claims exclusive access to two different DMA channel s instances. It also
claims one CPU_core_ s instance in non-exclusive share mode. While two chan transfer executes,
no other action may claim either instance of the DMA channel s resource, nor may any other action lock
the CPU_core_ s resource instance.

resource DMA channel s {
rand bit[3:0] priority;

}i

resource CPU core s {...};

action two chan transfer ({
lock DMA_channel_s chan_A;
lock DMA_channel_s chan_B;
share CPU core s ctrl core;

b

Example 145—DSL: Resource object

struct DMA channel s : public resource ({
rand attr<bit> priority {"priority", width (3,0)};
b

struct CPU core s : public resource { ... };

class two_chan transfer : public action ({
lock<DMA channel s> chan A {"chan A"};
lock<DMA channel s> chan B {"chan B"};
share<CPU core s> ctrl core {"ctrl core"};
i

Example 146—C++: Resource object

Copyright © 2021 Accellera. All rights reserved.
207

Portable Test and Stimulus Standard 2.0 — April 2021

In Example 147, there is a pool of 16 resource objects of type config. The action baz lock a claimsa
lock for 8 resource objects. The action baz share a claims to share 16 resource objects. The action
entry a can legally traverse two baz share a actions in parallel, as the same resource object can be
shared between concurrent activities. It can also legally traverse two baz lock a actions in parallel
because overall there are 16 resource objects and each action instance consumes only 8.

resource config {}

component foo c¢ {
pool config[l6] config p;
bind config p *;

action baz lock a {
lock config config object[8];
}

action baz share a {
share config config object[16];

}

action entry a {
activity {

parallel {
do baz share a;
do baz share a;

}

parallel {
do baz lock a;
do baz lock a;

}

Example 147—DSL: Locking and sharing arrays of resource objects

Copyright © 2021 Accellera. All rights reserved.
208

Portable Test and Stimulus Standard 2.0 — April 2021

16. Pools

Pools are used to determine possible assignment of objects to actions, and thus shape the space of legal test
scenarios. Pools represent collections of resources, state variables, and connectivity for data flow purposes.
Flow object exchange is always mediated by a pool. One action outputs an object to a pool and another
action inputs it from that same pool. Similarly, actions lock or share a resource object within some pool.

Pools are structural entities instantiated under components. They are used to determine the accessibility that
actions (see Clause 11) have to flow and resource objects. This is done by binding object reference fields of
action types to pools of the respective object types. Bind directives in the component scope associate
resource references with a specific resource pool, state references with a specific state pool (or state
variable), and buffer/stream object references with a specific data flow object pool (see 16.4).

16.1 DSL syntax

component_pool_declaration ::= pool [[expression | | type identifier identifier ;

Syntax 90—DSL: Pool instantiation

In Syntax 90, type_identifier refers to a flow/resource object type, i.c., a buffer, stream, state, or resource
struct type.

The expression applies only to pools of resource type; it specifies the number of resource instances in the
pool. If omitted, the size of the resource pool defaults to 1.

The following also apply:
a) The execution semantics of a pool are determined by its object type.

b) A pool of state type can hold one object at any given time, a pool of resource type can hold up to
the given maximum number of unique resource objects throughout a scenario, and a pool of buffer
or stream type is not restricted in the number of objects at a given time or throughout the scenario.

16.2 C++ syntax

The corresponding C++ syntax for Syntax 90 is shown in Syntax 91.

pss::pool

Defined in pss/pool.h (see C.39).
template <class T> class pool;

Instantiation of a pool.

Member functions

pool (const scope& name, std::size t count = 1) :constructor

Syntax 91—C++: Pool instantiation

Copyright © 2021 Accellera. All rights reserved.
209

Portable Test and Stimulus Standard 2.0 — April 2021

16.3 Examples

Example 148 and Example 149 demonstrate how to declare a pool.

buffer data buff s {

rand mem_segment s seg;
}i
resource channel s {...};
component dmac c {

pool data buff s buff p;

pool [4] channel s chan p;

}

Example 148—DSL: Pool declaration

The corresponding C++ example for Example 148 is shown in Example 149.

struct data buff s : public buffer {
rand attr<mem segment s> seg {"seg"};
bi

struct channel s : public resource {...};

class dmac_c : public component {
pool<data buff s> buff p{"buff p"};

pool<channel s> chan p{"chan p", 4};
}i

Example 149—C++: Pool declaration

16.4 Static pool binding directive

Every action executes in the context of a single component instance, and every object resides in some pool.
Multiple actions may execute concurrently, or over time, in the context of the same component instance, and
multiple objects may reside concurrently, or over time, in the same pool. Actions of a specific component
instance output objects to or input objects from a specific pool. Actions of a specific component instance can
only be assigned a resource of a certain pool.

Static bind directives determine which pools are accessible to the actions’ object references under which
component instances (see Syntax 92 and Syntax 93). Binding is done relative to the component sub-tree of
the component type in which the bind directive is applied. See also 20.1.

Copyright © 2021 Accellera. All rights reserved.
210

Portable Test and Stimulus Standard 2.0 — April 2021

16.4.1 DSL syntax

object_bind_stmt ::= bind hierarchical _id object bind_item_ or_list ;
object_bind_item or list ::=

object_bind_item_path

| { object bind item path {, object bind item path } }

object_bind_item_path ::= { component_path_elem . } object bind_item
component_path_elem ::= component_identifier [[constant_expression |]
object_bind_item ::=

action_type_identifier . identifier [[constant_expression |]

| *

Syntax 92—DSL.: Static bind directives

Pool binding can take one of two forms:

Explicit binding: associating a pool with a specific object reference field (input/output/resource-
claim) of an action type under a component instance.

Default binding: associating a pool generally with a component instance sub-tree, by object type.

The following also apply:

a)

b)

¢)
d)

e)

2

Components and pools are identified with a relative instance path expression. A specific object ref-
erence field is identified with the component instance path expression, followed by an action-type
name and field name, separated by dots (.).

Default binding can be specified for an entire sub-tree by using a wildcard instead of specific paths.
Explicit binding always takes precedence over default bindings.
Conflicting explicit bindings for the same object reference field shall be illegal.

If multiple bindings apply to the same object reference field, the bind directive in the context of the
top-most component instance takes precedence (i.e., the order of default binding resolution is top-
down).

Applying multiple default bindings to the same object reference field(s) from the same component
shall be illegal.

When binding object reference fields to a pool, the object and the pool must be of the exact same
type. Thus, it shall be illegal to bind an object of a derived type to a pool of its base type, or vice
versa.

Copyright © 2021 Accellera. All rights reserved.
211

Portable Test and Stimulus Standard 2.0 — April 2021

16.4.2 C++ syntax

The corresponding C++ syntax for Syntax 92 is shown in Syntax 93.

pss::bind
Defined in pss/bind.h (see C.06).
class bind;

Static bind of a type to multiple targets within the current scope.

Member functions
template <class R /*type*/, typename... T /*targets*/>
bind (const pool<R>& a pool, const T&... targets) :constructor

Syntax 93—C++: Static bind directives

16.4.3 Examples

Example 150 and Example 151 illustrate default binding pools.

In these examples, the buff p pool of data buff s objects is bound using the wildcard specifier
({*}). Because the bind statement is applied in the context of component dma_c, the buff p pool is
bound to all component instances and actions defined in dma_c (i.e., component instances dmas1 and
dmas2, and action mem2mem_a). Thus, the in data input and out data output of the mem2mem a
action share the same buff p pool. The chan p pool of channel s resources is bound to the two

instances.

struct mem segment s {...};
buffer data buff s {

rand mem segment s seg;
bi
resource channel s {...};
component dma sub c {

}i
component dma c {
dma sub c¢ dmasl, dmas2;
pool data buff s buff p;
bind buff p {*};
pool [4] channel s chan p;
bind chan p {dmasl.*, dmas2.*};
action memZmem a {
input data buff s in data;
output data buff s out data;

}s
}s

Example 150—DSL: Static binding

Copyright © 2021 Accellera. All rights reserved.
212

Portable Test and Stimulus Standard 2.0 — April 2021

The corresponding C++ example for Example 150 is shown in Example 151.

b

b

struct mem segments s : public structure {...};

struct data buff s : public buffer {

rand_attr<mem_segment s> seg {"seg"};

struct channel s : public resource { ... };
class dma sub c : public component { ... };

class dma c : public component {

comp_inst <dma sub_ c¢> dmasl{"dmasl"}, dmas2{"dmas2"};
pool <data buff s> buff p { "buff p" };
bind b {buff p};
pool<channel s> chan p{"chan p", 4};
bind b2 { chan p, dmasl, dmas2};
class mem2mem a : public action {
input <data buff s> in data {"in data"};
output <data buff s> out data {"out data"};

bi
type decl<memZmem a> memZ2mem a decl;

Example 152 and Example 153 illustrate the two forms of binding:, explicit and default. Action
power transition a’s input and output are both associated with the context component’s
(graphics_c) state object pool. However, action observe same power state_ a has two inputs,
each of which is explicitly associated with a different state object pool, the respective sub-component state
variable. The channel s resource pool is instantiated under the multimedia subsystem and is shared

Example 151—C++: Static binding

between the two engines.

Copyright © 2021 Accellera. All rights reserved.
213

Portable Test and Stimulus Standard 2.0 — April 2021

state power state s { rand int in [0..4] level; }
resource channel s {}
component graphics c {
pool power state s power state var;
bind power state var *; // accessible to all actions under this
// component (specifically power transition's
// input/output)
action power transition a f{
input power state s curr; //current state
output power state s next; //next state
lock channel s chan;

}
component my multimedia ss c {
graphics ¢ gfx0;
graphics c¢ gfxl;
pool [4] channel s channels;
bind channels {gfx0.*,gfxl.*};// accessible by default to all actions
// under these component sub-trees
// (specifically power transition's chan)
action observe same power state a {
input power state s gfx0 state;
input power state s gfxl state;
constraint gfx0 state.level == gfxl state.level;
}
// explicit binding of the two power state variables to the
// respective inputs of action observe same power state a
bind gfx0.power state var observe same power state a.gfx0 state;
bind gfxl.power state var observe same power state a.gfxl state;

Example 152—DSL: Pool binding

Copyright © 2021 Accellera. All rights reserved.
214

Portable Test and Stimulus Standard 2.0 — April 2021

struct power state s : public state {
attr<int> level{"level", range(0,4) };

}i
struct channel s : public resource { ... };

class graphics ¢ : public component {
pool<power state s> power state var {"power state var"};
bind bl {power state var}; // accessible to all actions under this component
// (specifically power transition’s input/output)
class power transition a : public action {
input <power state s> curr {"curr"};
output <power state s> next {"next"};
lock <channel s> chan{"chan"};
}i
type decl<power transtion a> power transition a decl;

}i

class my multimedia ss c : public component {
comp_inst<graphics c> gfx0 {"gfx0"};
comp_inst<graphics c> gfxl {"gfx1"};
pool <channel s> channels {"channels", 4};
bind bl { channels, gfx0, gfxl}; // accessible by default to all actions
// under these component sub-trees
// (specifically power transition’s chan)
class observe same power state a : public action {
input <power state s> gfx0 state {"gfx0 state"};
input <power state s> gfxl state {"gfxl state"};
constraint cl { gfx0 state->level == gfxl state->level };
i
type decl<observe same power state a> observe same power state a decl;
// explicit binding of the two power state variables to the
// respective inputs of action observe same power state
bind b2 {gfx0->power state var,
observe same power state a decl->gfx0 state};
bind b3 {gfxl->power state var,
observe same power state a decl->gfxl state};

Example 153—C++: Pool binding

Copyright © 2021 Accellera. All rights reserved.
215

Portable Test and Stimulus Standard 2.0 — April 2021

In Example 154, there is a observe same power state a action type with an array of 2 input state
objects. Action power transition a will cause at least one inferred instance to bind with the
respective observe same power state a action’s object for each one of the graphics c
component instances. Using explicit pool bind statements, each element in the object array of

observe same power state a isbound to a different pool.

state power state s {
rand int in [0..4] level;
constraint initial -> level == 0;

// graphics component with power state
component graphics c {
pool power state s power state var;
bind power state var *; // accessible to all actions under this
// component (specifically power transition's
// input/output)
action power transition a {
input power state s curr; //current state
output power state s next; //next state

component my multimedia ss c {
graphics ¢ gfx([2];

action observe same power state a {
rand int in [1..4] observed level;

input power state s gfx state[2];
constraint { foreach (s: gfx state) {
s.level == observed level;
H}
}

// explicit binding of the two power state variables to the

// respective inputs of action observe same power state a

bind gfx[0] .power state var observe same power state a.gfx state[0];
bind gfx[1l].power state var observe same power state a.gfx state[l];

Example 154—DSL: Multiple state pools of the same state type

Copyright © 2021 Accellera. All rights reserved.
216

Portable Test and Stimulus Standard 2.0 — April 2021

16.5 Resource pools and the instance_id attribute

Each object in a resource pool has a unique instance_id value, ranging from O to the pool’s size - 1.
Two actions that reference a resource object with the same instance_id value in the same pool are
referencing the same resource object. See also 17.1.

For example, in Example 155 and Example 156, action transfer is locking two kinds of resources:
channel sand cpu core_s. Because channel s is defined under component dma_ ¢, each dma_c
instance has its own pool of two channel objects. Within action par dma xfers, the two transfer actions
can be assigned the same channel instance_id because they are associated with different dma c
instances. However, these same two actions must be assigned a different cpu core s object, with a
different instance_id, because both dma c instances are bound to the same resource pool of
cpu_core_s objects defined under pss_top and they are scheduled in parallel. The bind directive
designates the pool of cpu_core_ s resources is to be utilized by both instances of the dma ¢ component.

resource cpu core s {}
component dma c {
resource channel s {}
pool[2] channel s channels;
bind channels {*}; // accessible to all actions
// under this component (and its sub-tree)
action transfer {
lock channel s chan;
lock cpu core s core;
}
}
component pss_top {
dma c dmaO,dmal;
pool[4] cpu core s cpu;
bind cpu {dmaO.*, dmal.*};// accessible to all actions
// under the two sub-components
action par dma xfers ({
dma c::transfer xfer a;
dma c::transfer xfer Db;

constraint xfer a.comp != xfer b.comp;
constraint xfer a.chan.instance id==xfer b.chan.instance id; //OK
constraint xfer a.core.instance id==xfer b.core.instance id; //conflict!
activity {
parallel {
xfer a;
xfer b;

Example 155—DSL: Resource object assignment

Copyright © 2021 Accellera. All rights reserved.
217

Portable Test and Stimulus Standard 2.0 — April 2021

struct cpu core s : public resource { ... };

class dma c : public component ({
struct channel s : public resource { ... };

pool <channel s> channels {"channels", 2};
bind bl {channels}; // accessible to all actions
// under this component (and its sub-tree)

class transfer : public action ({

lock <channel s> chan {"chan"};

lock <cpu core s> core {"core"};
}i
type decl<transfer> transfer decl;

}i

class pss_top : public component {
comp inst<dma c> dmaO{"dma0"}, dmal{"dmal"};
pool <cpu core s> cpu {"cpu", 4};
bind b2 {cpu, dmalO, dmal}; // accessible to all actions
// under the two sub-components
class par _dma xfers : public action {
action_handle<dma_c::transfer> xfer a {"xfer_a"};
action handle<dma c::transfer> xfer b {"xfer b"};

constraint cl {xfer a->comp() != xfer b->comp () };

constraint c2 {xfer_a->chan->instance_id == xfer b->chan->instance id};
// OK

constraint c3 {xfer a->core->instance id == xfer b->core->instance id};

// conflict!

activity act {
parallel {
xfer a,
xfer b
}
i
b
type decl<par dma xfers> par dma xfers decl;
i

Example 156—C++: Resource object assignment

16.6 Pool of states and the initial attribute

Each pool of a state type contains exactly one state object at any given point in time throughout the
execution of the scenario. A state pool serves as a state variable instantiated on the context component.
Actions outputting to a state pool can be viewed as transitions in a finite state machine. See also 17.1.

Prior to execution of an action that outputs a state object to the pool, the pool contains the initial object. The
initial flag is true for the initial object and false for all other objects subsequently residing in the pool.
The initial state object is overwritten by the first state object (if any) which is output to the pool. The initial
object is only input by actions that are scheduled before any action that outputs a state object to the same
pool.

Copyright © 2021 Accellera. All rights reserved.
218

Portable Test and Stimulus Standard 2.0 — April 2021

Consider, for example, the code in Example 157 and Example 158. The action codec c::configure
has an UNKNOWN mode as its configuration state precondition, due to the constraint on its input
prev_conf. Because it outputs a new state object with a different mode value, there can only be one such
action per codec component instance (unless another action, not shown here, sets the mode back to

UNKNOWN).

enum codec config mode e {UNKNOWN, A, B}
component codec c {
state configuration s {
rand codec config mode e mode;
constraint initial -> mode == UNKNOWN;
}
pool configuration s config var;
bind config var *;
action configure {
input configuration s prev conf;
output configuration s next conf;

constraint prev _conf.mode == UNKNOWN && next conf.mode in [A, B];

Example 157—DSL: State object binding

PSS _ENUM(codec_config mode e, UNKNOWN, A, B);

class codec c : public component {
struct configuration s : public state {
rand attr<codec config mode e> mode {"mode"};

constraint cl {

if then {
cond(initial),
mode == codec config mode e::UNKNOWN

}i
}i

pool <configuration s> config var {"config var"} ;
bind bl { config var };

class configure a : public action ({
input <configuration s> prev conf {"prev conf"};
output <configuration s> next conf {"next conf"};

constraint cl { prev _conf->mode == codec config mode e::UNKNOWN &&
in (next conf->mode,
range (codec_config mode e::A)
(codec_config mode e::B))
}i
bi
type decl<configure a> configure a decl;

}i

Example 158—C++: State object binding

Copyright © 2021 Accellera. All rights reserved.
219

Portable Test and Stimulus Standard 2.0 — April 2021

17. Randomization specification constructs

Scenario properties can be expressed in PSS declaratively, as algebraic constraints over attributes of
scenario entities.

a) There are several categories of struct and action fields.

1
2)
3)
4)

5)

Random attribute field - a field of a plain-data type (e.g., bit) that is qualified with the rand
keyword.

Non-random attribute field - a field of a plain-data type (e.g., int) that is not qualified with the
rand keyword.

Sub-action field - a field of an action type or a plain-data type that is qualified with the action
keyword.

Input/output flow object reference field - a field of a flow object type that is qualified with the
input or output keyword.

Resource claim reference field - a field of a resource object type that is qualified with the lock
or share keyword.

b) Constraints may shape every aspect of the scenario space. In particular:

1
2)

3)

4)
5)

6)

Constraints are used to determine the legal value space for attribute fields of actions.

Constraints affect the legal assignment of resources to actions and, consequently, the schedul-
ing of actions.

Constraints may restrict the possible binding of action inputs to action outputs, and, thus, possi-
ble action inferences from partially specified scenarios.

Constraints determine the association of actions with context component instances.

Constraints may be used to specify all of the above properties in a specific context of a higher
level activity encapsulated via a compound action.

Constraints may also be applied also to the operands of control flow statements—determining
loop count and conditional branch selection.

Constraints are typically satisfied by more than just one specific assignment. There is often room for
randomness or the application of other considerations in selecting values. The process of selecting values for
scenario variables is called constrained randomization or simply randomization.

Randomized values of variables become available in the order in which they are used in the execution of a
scenario, as specified in activities. This provides a natural way to express and reason about the
randomization process. It also guarantees values sampled from the environment and fed back into the PSS
domain during the generation and/or execution have clear implications on subsequent evaluation. However,
this notion of ordering in variable randomization does not introduce ordering into the constraint system—the
solver is required to look ahead and accommodate for subsequent constraints.

Copyright © 2021 Accellera. All rights reserved.
220

Portable Test and Stimulus Standard 2.0 — April 2021

17.1 Algebraic constraints
17.1.1 Member constraints

PSS supports two types of constraint blocks (see Syntax 94 and Syntax 95) as action/struct members: static
constraints that always hold and dynamic constraints that only hold when they are referenced by the user by
traversing them in an activity (see 17.4.9) or referencing them inside a constraint. Dynamic constraints
associate a name with a constraint that would typically be specified as an in-line constraint.

17.1.1.1 DSL syntax

constraint_declaration ::=
constraint constraint_set
| [dynamic] constraint identifier constraint block
constraint_set ::=
constraint_body item
| constraint_block
constraint_block ::= { { constraint body item } }
constraint_body item ::=
expression_constraint_item
| foreach_constraint_item
| forall constraint item
| if constraint item
| implication_constraint item
| unique_constraint_item
| default hierarchical id == constant expression ;
| default disable hierarchical id ;
| stmt_terminator
Syntax 94—DSL: Member constraint declaration

Copyright © 2021 Accellera. All rights reserved.
221

Portable Test and Stimulus Standard 2.0 — April 2021

17.1.1.2 C++ syntax

The corresponding C++ syntax for Syntax 94 is shown in Syntax 95.

pss::constraint

Defined in pss/constraint.h (see C.13).
class constraint;

Declare a member constraint.

Member functions
template <class... R> constraint(
const R&&... /*detail::AlgebExpr*/ expr) :declarea constraint
template <class... R> constraint (const std::string& name,
const R&&... /*detail::AlgebExpr*/ expr) :declare a named constraint

pss::dynamic_constraint
Defined in pss/constraint.h (see C.13).
class dynamic constraint;

Declare a dynamic member constraint.

Member functions
template <class... R> dynamic constraint (const std::string& name,
const R&&... /*detail::AlgebExpr*/ expr) :declare a named dynamic constraint

Syntax 95—C++: Member constraint declaration
17.1.1.3 Examples

Example 159 and Example 160 declare a static constraint block, while Example 161 and Example 162
declare a dynamic constraint block. In the case of the static constraint, the name is optional.

action A {
rand bit[31:0] addr;

constraint addr c {
addr == 0x1000;
}

Example 159—DSL: Declaring a static constraint

Copyright © 2021 Accellera. All rights reserved.
222

Portable Test and Stimulus Standard 2.0 — April 2021

class A : public action {
rand attr <bit> addr {"addr", width (31, 0) };

constraint addr c¢ { "addr c", addr == 0x1000 };
b

Example 160—C++: Declaring a static constraint

action B {
action bit[31:0] addr;

dynamic constraint dyn addrl c {
addr in [0x1000..0x1FFF];
}

dynamic constraint dyn addr2 c {
addr in [0x2000..0x2FFF];

}

Example 161—DSL: Declaring a dynamic constraint

class B : public action {
action attr<bit> addr {"addr", width (31, 0) };

dynamic constraint dyn addrl c¢ { "dyn addrl c",
in (addr, range (0x1000, Ox1fff))
i

dynamic constraint dyn addr2 c { "dyn addr2 c",
in (addr, range (0x2000, Ox2fff))
i
b

Example 162—C++: Declaring a dynamic constraint

Example 163 and Example 164 show a dynamic constraint inside a static constraint. In the examples, the
send_pkt action sends a packet of a random size. The static constraint pkt sz _c ensures the packet is of
a legal size and the two dynamic constraints, small pkt c and jumbo pkt c, specialize the packet
size to be small or large, respectively. The static constraint interesting sz c restricts the size to be
either <=100 for small pkt cor>1500 for jumbo pkt c.

Copyright © 2021 Accellera. All rights reserved.
223

Portable Test and Stimulus Standard 2.0 — April 2021

action send pkt ({
rand bit[16] pkt sz;

constraint pkt sz c {pkt sz > 0;}
constraint interesting sz c¢ {small pkt c || jumbo pkt c;}

dynamic constraint small pkt c {pkt sz <= 100;}
dynamic constraint jumbo pkt c {pkt sz > 1500;}

action scenario {
activity {

// Send a packet with size in [1..100, 1501..65535]
do send pkt;
// Send a small packet with a directly-specified in-line constraint
do send pkt with {pkt sz <= 100;};
// Send a small packet by referencing a dynamic constraint
do send pkt with {small pkt c;};

Example 163—DSL: Referencing a dynamic constraint inside a static constraint

class send pkt : public action {...
rand attr<bit> pkt sz {"pkt sz", width(16)};

constraint pkt sz c {"pkt sz c", pkt sz > 0};
constraint interesting sz ¢ {"interesting sz c",
small pkt c || jumbo_pkt c};
dynamic_constraint small pkt c {"small pkt c", pkt sz <= 100};
dynamic_constraint jumbo pkt c {"jumbo pkt c", pkt sz > 1500};
i

class scenario : public action {...
activity act {
action handle<send pkt>(),
action handle<send pkt>().with(action handle<send pkt>()->pkt sz<=100),
action handle<send pkt>().with(action handle<send pkt>()->small pkt c)
}i
}i

Example 164—C++: Referencing a dynamic constraint inside a static constraint

17.1.2 Constraint inheritance

As discussed in 20.1, an action/struct subtype has all of the constraints that are declared in the context of its
super-type or that are inherited by the super-type. Unnamed static constraints in a subtype are added to all
other constraints. A named static or dynamic constraint in a subtype shadows (masks) a constraint of the
same name from the super-type. Constraint inheritance applies in the same way to static constraints and
dynamic constraints.

Example 165 and Example 166 illustrate a simple case of constraint inheritance and shadowing. Instances of
struct corrupt data buff satisfy the unnamed constraint of data buff based on which size isin

Copyright © 2021 Accellera. All rights reserved.
224

Portable Test and Stimulus Standard 2.0 — April 2021

the range 1 to 1024. Additionally, size is greater than 256, as specified in the subtype. Finally, per
constraint size align as specified in the subtype, size divided by 4 has a reminder of 1.

buffer data buff ({
rand int size;
constraint size in [1..1024];
constraint size align { size%4 == 0; } // 4-byte aligned

buffer corrupt data buff : data buff ({
constraint size align { size%4 == 1; } // alignment 1 byte off
constraint corrupt data size { size > 256; } // additional constraint

Example 165—DSL: Inheriting and shadowing constraints

struct data buff : public buffer {
rand attr<int> size {"size"};
constraint size in { "size in", in (size, range(1,1024)) };

constraint size align { "size align", size $ 4 == 0 }; // 4-byte aligned
i

struct corrupt data buff : public data buff {
constraint size align { "size align", size % 4 == 1 };
// alignment 1 byte off
constraint corrupt data size { "corrupt data size", size > 256 };
// additional constraint
}i

Example 166—C++: Inheriting and shadowing constraints

17.1.3 Action traversal in-line constraints

Constraints on sub-action data attributes can be in-lined directly in the context of an action traversal
statement in the activity clause (for syntax and other details, see 13.3.1).

In the context of in-line constraints, attribute field paths of the traversed sub-action can be accessed without
the sub-action field qualification. Fields of the traversed sub-action take precedence over fields of the
containing action. Other attribute field paths are evaluated in the context of the containing action. In cases
where the containing-action fields are shadowed (masked) by fields of the traversed sub-action, they can be
explicitly accessed using the built-in variable this. In particular, fields of the context component of the
containing action shall be accessed using the prefix path this.comp (see also Example 169 and

Example 170).

If a sub-action field is traversed uniquely by a single traversal statement in the activity clause, in-lining a
constraint has the same effect as declaring the same member constraint on the sub-action field of the
containing action. In cases where the same sub-action field is traversed multiple times, in-line constraints
apply only to the specific traversal in which they occur.

Unlike member constraints, in-line constraint are evaluated in the specific scheduling context of the action
traversal statement. 1f attribute fields of sub-actions other than the one being traversed occur in the
constraint, these sub-action fields have already been traversed in the activity. In cases where a sub-action
field has been traversed multiple times, the most recently selected values are considered.

Copyright © 2021 Accellera. All rights reserved.
225

Portable Test and Stimulus Standard 2.0 — April 2021

Example 167 and Example 168 illustrate the use of in-line constraints. The traversal of a3 is illegal, because
the path a4 . £ occurs in the in-line constraint, but a4 has not yet been traversed at that point. Constraint c2,

in contrast, equates al . f with a4 . f without having a specific scheduling context, and is, therefore, legal
and enforced.

action A {
rand bit[3:0] f£;
b

action B {
A al, a2, a3, a4;

constraint ¢l { al.f in [8..15]1; };
constraint c2 { al.f == a4.f; };

activity {
al;
a2 with {
f in [8..15]; // same effect as constraint cl has on al
b
a3 with {
f == ad.f; // illegal: a4.f unresolved at this point
bi
a4;

Example 167—DSL: Action traversal in-line constraint

class A : public action {
rand attr< bit > £ {"f", width(3, 0)};
i

class B : public action {
action handle<A> al{"al"}, a2{"a2"}, a3{"a3"}, ad4{"ad"};

constraint ¢l { "cl1l", in (al->f, range(8, 15)) };
constraint c2 { "c2", al->f == ad4->f };
activity a {
al,
a2.with
(in {a2->f, range(8,15)}), // same effect as constraint cl has on al
a3.with
(a3->f == a4->f), // illegal: ad4->f unresolved at this point
a4

Example 168—C++: Action traversal in-line constraint

Copyright © 2021 Accellera. All rights reserved.
226

Portable Test and Stimulus Standard 2.0 — April 2021

Example 169 and Example 170 illustrate different name resolutions within an in-line with clause.

component subc {
action A {
rand int f;
rand int g;

component top {
subc subl, sub2;
action B {
rand int f;
rand int h;
subc::A a;

activity {
a with {
f < h; // sub-action's f and containing action's h
g == this.f; // sub-action's g and containing action's f
comp == this.comp.subl;

// sub-action's component is sub-component
// 'subl' of the parent action's component

Example 169—DSL: Name resolution inside with constraint block

Copyright © 2021 Accellera. All rights reserved.
227

Portable Test and Stimulus Standard 2.0 — April 2021

class subc : public component {
class A : public action {
rand attr<int> £ {"f"};
rand attr<int> g {"g"};
}i
type decl<A> A decl;
}i

class top : public component {
comp_inst<subc> subl {"subl"}, sub2 {"sub2"};
class B : public action {
rand attr<int> £ {"f"};
rand attr<int> h {"h"};
action handle<subc::A> a{"a"};

activity act {

a.with (
(a->f < h)
&& (a->g == £)
&& (a->comp () == comp<top>()->subl)

// sub-action's component is sub-component
// 'subl' of the parent action's component
)
bi
bi
type decl B decl;
}i

Example 170—C++: Name resolution inside with constraint block

17.1.4 Logical expression constraints

A logical (Boolean) constraint can be used to specify a constraint. Syntax 96 shows the syntax for an
expression constraint.

17.1.4.1 DSL syntax

expression_constraint_item ::= expression ;

Syntax 96—DSL: Expression constraint

expression may be any logical expression. The constraint is satisfied if the expression evaluates to true.
17.1.4.2 C++ syntax

Class detail: :AlgebExpr is used to represent an expression constraint item.

17.1.5 Implication constraints

Conditional constraints can be specified using the implication operator (->). Syntax 97 shows the syntax for
an implication constraint.

Copyright © 2021 Accellera. All rights reserved.
228

Portable Test and Stimulus Standard 2.0 — April 2021

17.1.5.1 DSL syntax

implication_constraint_item ::= expression -> constraint_set

Syntax 97—DSL: Implication constraint

expression may be any logical expression. constraint_set represents any valid constraint or an unnamed
constraint set.

The following also apply:

a) The Boolean equivalent of the implication operatora -> bis (!a || b). This states that if the
expression is true, all of the constraints in constraint_set shall be satisfied. In other words, if the
expression is true, then the random values generated are constrained by the constraint set. Other-
wise, the random values generated are unconstrained.

b) The implication constraint is bidirectional.
17.1.5.2 C++ syntax
C++ uses the if_then construct to represent implication constraints.
The Boolean equivalent of if_then(a, b)is (!a || Db).
17.1.5.3 Examples
Consider Example 171 and Example 172. Here, b is forced to have the value 1 whenever the value of the
variable a is greater than 5. However, since the constraint is bidirectional, if b has the value 1, then the

evaluation expression (! (a>5) || (b==1)) is true, so the value of a is unconstrained. Similarly, if b
has a value other than 1, a is <= 5.

struct impl s {
rand bit[7:0] a, b;

constraint ab c {

(a >5) -> b == 1;

Example 171—DSL: Implication constraint

class impl s : public structure ({
rand attr<bit> a {"a", width(7,0)}, b {"b", width(7,0)};
constraint ab _c {
if then {
cond(a > 5),
b ==

i

Example 172—C++: Implication constraint

Copyright © 2021 Accellera. All rights reserved.
229

Portable Test and Stimulus Standard 2.0 — April 2021

17.1.6 if-else constraints
Conditional constraints can be specified using the if and if-else constraint statements.

Syntax 98 and Syntax 99 shows the syntax for an if-else constraint.

17.1.6.1 DSL syntax

if constraint_item ::= if (expression) constraint_set [else constraint_set]

Syntax 98—DSL: Conditional constraint

expression may be any logical expression. constraint_set represents any valid constraint or an unnamed

constraint set.

The following also apply:

a) Ifthe expression is true, all of the constraints in the first constraint_set shall be satisfied; otherwise,

all the constraints in the optional else constraint _set shall be satisfied.
b) Constraint sets may be used to group multiple constraints.

c) Justlike implication (see 17.1.5), if-else style constraints are bidirectional.
17.1.6.2 C++ syntax

The corresponding C++ syntax for Syntax 98 is shown in Syntax 99.

pss::if_then

Defined in pss/if_then.h (see C.31).
class if then;

Declare if-then constraint statement.

Member functions

if then (const detail::AlgebExpré& a cond, const detail::AlgebExpré&
true expr) :constructor

pss::if_then_else

Defined in pss/if_then.h (see C.31).
class if then else;

Declare if-then-else constraint statement.

Member functions

if then else (const detail::AlgebExpr& a cond, const detail::AlgebExpré&
true expr, const detail::AlgebExpr& false expr) :constructor

Syntax 99—C++: Conditional constraint

Copyright © 2021 Accellera. All rights reserved.
230

Portable Test and Stimulus Standard 2.0 — April 2021

17.1.6.3 Examples

In Example 173 and Example 174, the value of a constrains the value of b and the value of b constrains the

value of a.

Attribute a cannot take the value 0 because both alternatives of the if-else constraint preclude it. The
maximum value for attribute b is 4, since in the i f alternative it is 1 and in the e1se alternative it is less

than a, which itself is <= 5.

In evaluating the constraint, the if-clause evaluates to ! (a>5) || (b==1). If a is in the range
{1,2,3,4,5}, then the ! (a>5) expression is true, so the (b==1) constraint is ignored. The else-
clause evaluates to ! (a<=5), which is false, so the constraint expression (b<a) is true. Thus, b is in the

range {0.. (a-1) }.Ifais 2, then b is in the range {0, 1}.Ifa > 5,thenbis 1.

However, if b is 1, the (b==1) expression is true, so the ! (a>5) expression is ignored. At this point,

either ! (a<=5) ora > 1, which means that a is in the range {2, 3, .. 255}.

struct if else s {
rand bit[7:0] a, b;

constraint ab c {
if (a > 5) {

b == 1;
} else {
b < a;

}

Example 173—DSL.: if constraint

struct if else s : public structure ({
rand_attr<bit> a{"a", width(7,0)} , b{"b", width(7,0)};

constraint ab_c {
if then else {
cond(a > 5),
b ==1,
b < a

}i
b

Example 174—C++: if constraint

Copyright © 2021 Accellera. All rights reserved.
231

Portable Test and Stimulus Standard 2.0 — April 2021

17.1.7 foreach constraints

Elements of collections can be iteratively constrained using the foreach constraint.

Syntax 100 and Syntax 101 show the syntax for a foreach constraint.

17.1.7.1 DSL syntax

foreach_constraint_item ::=
foreach ([iterator_identifier : | expression [| index_identifier |]) constraint_set

Syntax 100—DSL: foreach constraint

constraint_set represents any valid constraint or an unnamed constraint set.

The following also apply:

a)
b)

¢)

d)

e)

expression shall be of a collection type (i.e., array, list, map or set).

All of the constraints in constraint_set shall be satisfied for each of the elements in the collection
specified by expression.

iterator_identifier specifies the name of an iterator variable of the collection element type. Within
constraint_set, the iterator variable, when specified, is an alias to the collection element of the cur-
rent iteration.

index_identifier specifies the name of an index variable. Within constraint_set, the index variable,
when specified, corresponds to the element index of the current iteration.

1) For arrays and lists, the index variable shall be a variable of type int, ranging from 0 to one
less than the size of the collection variable.

2) For maps, the index variable shall be a variable of the same type as the map keys, and range
over the values of the keys.

3) For sets, an index variable shall not be specified.

Both the index and iterator variables, if specified, are implicitly declared within the foreach scope
and limited to that scope. Regular name resolution rules apply when the implicitly declared variables
are used within the foreach body. For example, if there is a variable in an outer scope with the same
name as the index variable, that variable is shadowed (masked) by the index variable within the
foreach body. The index and iterator variables are not visible outside the foreach scope.

Either an index variable or an iterator variable or both shall be specified. For a set, an iterator vari-
able shall be specified, but not an index variable.

Copyright © 2021 Accellera. All rights reserved.
232

Portable Test and Stimulus Standard 2.0 — April 2021

17.1.7.2 C++ syntax

The corresponding C++ syntax for Syntax 100 is shown in Syntax 101.

pss::foreach
Defined in pss/foreach.h (see C.29).
class foreach;
Iterate constraint across array of non-rand and rand attributes.
Member functions

foreach (const attré& iter, const attr<vec<T>>& array, const
detail::AlgebExpré& constraint):non-rand attributes (specializations provided for T = int and bit)

foreach (const attr& iter, const rand attr<vec<T>>& array, const
detail::AlgebExpr& constraint):rand attributes (specializations provided for T = int and bit)

Syntax 101—C++: foreach constraint

NOTE—Only iteration over arrays is supported in PSS/C++. foreach iteration over other collection types is not sup-
ported.

NOTE—In PSS/C++, the index and iteration variables must be explicitly declared in the containing scope of the foreach
loop.

17.1.7.3 Examples

Example 175 and Example 176 show an iterative constraint that ensures that the values of the elements of a
fixed-size array increment.

struct foreach s {
rand bit[9:0] fixed arr[10];

constraint fill arr elem c {
foreach (fixed arr[i]) {
if (i > 0) {
fixed arr([i] > fixed arr[i-1];

}

Example 175—DSL: foreach iterative constraint

Copyright © 2021 Accellera. All rights reserved.
233

Portable Test and Stimulus Standard 2.0 — April 2021

class foreach s : public structure {
rand attr vec<bit> fixed arr {"fixed arr", 10, width(9,0)};
attr<int> i {"i"};
constraint fill arr elem c {"fill arr elem c",
foreach {i, fixed arr,
if then {
cond(i > 0),
fixed arr[i] > fixed arr[i-1]

Example 176—C++: foreach iterative constraint

17.1.8 forall constraints

The forall constraint is used to apply constraints to all instances of a specific type within the instance subtree
in which the constraint is placed.

Syntax 102 and Syntax 103 show the syntax for a forall constraint.

17.1.8.1 DSL syntax

forall constraint item ::=
forall (iterator identifier : type identifier [in ref path]) constraint set

Syntax 102—DSL.: forall constraint

type_identifier specifies the type of the entity (action, struct, stream, buffer, state, resource) to which the
constraint applies. iterator_identifier can be used inside constraint_set as an alias to each instance, much
like the iterator identifier in a foreach constraint is an alias to each element in the collection (see 17.1.7).
ref path is optionally used to restrict the constraint’s scope of application to a certain instance subtree.

The following also apply:

a) All of the constraints in constraint _set shall be satisfied for every instance of the specified type in
the forall constraint’s application scope.

b) When ref path is omitted, the application scope is the subtree of the constraint’s enclosing scope:
1) In the case of a member (type-level) non-dynamic constraint, its application scope includes all

of the context type’s fields (attributes, object references), and in the case of a compound action,
also its entire activity.

2) In the case of an in-line with constraint (see 17.1.3), its application scope is the traversed sub-
action’s fields and, if compound, also its entire activity.
3) In the case of an activity constraint statement or the activation of a named dynamic constraint,
the application scope is the activity scope immediately enclosing the activity statement.
c¢) When ref path is specified, the application scope is the subtree under the entity (action, object, or
struct) designated by ref path.

d) The forall constraint applies to sub-actions within its application scope regardless of whether they
are traversed using an action handle or anonymously.

Copyright © 2021 Accellera. All rights reserved.
234

Portable Test and Stimulus Standard 2.0 — April 2021

17.1.8.2 C++ syntax

The corresponding C++ syntax for Syntax 102 is shown in Syntax 103.

pss::forall
Defined in pss/forall.h (see C.28).
template <class T> class forall;
Iterate constraint across attributes of all instances of the specified type reachable from the enclosing scope.

Member functions

forall (const iterator<T>& iter var, const detail::AlgebExpré& constraint)

. constructor

Syntax 103—C++: forall constraint

17.1.8.3 Examples

Example 177 demonstrates the use of a forall constraint in a compound action, constraining sub-actions
traversed directly and indirectly under its activity (case b.1 above). Action entry places a constraint on all
instances of action A, relating attribute x to its own attribute ax_1imit. The constraint does not apply to an

attribute of sub-action B by the same name.

Copyright © 2021 Accellera. All rights reserved.
235

Portable Test and Stimulus Standard 2.0 — April 2021

action A {
rand int in [0..9] x;

}i

action B {
rand int in [0..9] x;
}i

action C {
A a;
B b;
activity {
schedule {
a; b;

}
}i

action entry {
rand int in [0..9] ax limit;
A a;
C c;
constraint {
forall (a_it: A) {
a it.x <= ax limit;
}
}
activity {
a; c;
}
}i

Example 177—DSL: forall constraint

The forall constraint in Example 177 is equivalent to the corresponding constraint on each path to an action
handle of type A. Hence, action entry in Example 177 can be rewritten in the way shown in Example 178.

action entry {
rand int in [0..9] ax_limit;
A a;
C c;
constraint {
a.x <= ax_ limit;
c.a.x <= ax limit;
}
activity {
a; c;
}
bi

Example 178—DSL: rewrite of forall constraint in terms of explicit paths

Copyright © 2021 Accellera. All rights reserved.
236

Portable Test and Stimulus Standard 2.0 — April 2021

Example 179 below shows the same definitions of action entry from Example 177 above in C++.

class entry

public action {

PSS CTOR (entry,

action);

rand attr<int> ax limit {"ax limit",
action handle<A> a {"a"};
action handle b {"b"};
iterator<Cl::A a> a it {"a it"};
constraint cnst {

forall<A> {a it,

range (0,9) };

a it->a <=
}
}i
activity act {
sequence {a,
b
}i
type decl<entry>

ax_ limit

ct

entry type;

Example 179—C++: forall constraint

Example 180 demonstrates the use of forall constraints in two different contexts inside an activity. The first
is an in-line with constraint item (case b.2 above), applying to all instances of type A under action C that is
being traversed in this statement. The second is an activity constraint statement (case b.3 above). It applies
to all instances of type A in the immediately enclosing activity scope — in this case the parallel statement.
Hence this constraint applies to action A in the first parallel branch, and to all actions of type A under action

C in the second parallel branch.

action entry {
activity {
do C with {
forall (a_it: A) {
a it.x == 1;
}
}
parallel {
do A;
do C;
constraint forall
a it.x in [2,

(a_it: Bn) {
4];

Example 180—DSL.: forall constraint in different activity scopes

Copyright © 2021 Accellera. All rights reserved.
237

Portable Test and Stimulus Standard 2.0 — April 2021

Example 181 demonstrates the use of a forall constraint item in a dynamic constraint under an action. The
dynamic constraint is activated from above for one traversal of that action, and not for the other. In this case,
A’s attributes s1.x and s2 . x may be randomized to the value 0xf £ in the first execution of B, but not in
the second.

struct S {
rand bit[8] x;
}i

action A {
rand S sl, s2;

i

action B {
dynamic constraint cl {
forall (it: S) { it.x != Oxff; }
}
activity { do A; }
bi

action entry {
activity {
do B;
do B with { cl; };

Example 181—DSL.: forall constraint item in a dynamic constraint

17.1.9 Unique constraints
The unique constraint causes unique values to be selected for each element in the specified set.

Syntax 104 and Syntax 105 show the syntax for a unique constraint.

17.1.9.1 DSL syntax

unique_constraint_item ::= unique { hierarchical id list} ;

hierarchical id list ::= hierarchical id {, hierarchical id }

Syntax 104—DSL: unique constraint

Copyright © 2021 Accellera. All rights reserved.
238

Portable Test and Stimulus Standard 2.0 — April 2021

17.1.9.2 C++ syntax

The corresponding C++ syntax for Syntax 104 is shown in Syntax 105.

pss::unique

Defined in pss/unique.h (see C.50).
class unique;

Declare a unique constraint.

Member functions

template <class... R> unique (R&&... /*rand attr<T>*/ r) :constructor
Syntax 105—C++: unique constraint

17.1.9.3 Examples

Example 182 and Example 183 force the solver to select unique values for the random attribute fields A, B,
and C. The unique constraint is equivalent to the following constraint statement: ((A != B) && (A !=

C) && (B != Q)).

struct my struct ({
rand bit[4] in [0..12] A, B, C;
constraint unique abc c {
unique {A, B, C};
}

Example 182—DSL: Unique constraint

class my struct : public structure {
rand attr<bit> A {"A", width(4), range(0,12) 1},
B {"B", width(4), range(0,12) 1},
C {"C", width(4), range(0,12) 1};
constraint unique abc ¢ {"unique abc c",
unique {A, B, C};
}i
}i

Example 183—C++: Unique constraint

Copyright © 2021 Accellera. All rights reserved.
239

Portable Test and Stimulus Standard 2.0 — April 2021

17.1.10 Default value constraints

A default value constraint determines the value of an attribute, unless explicitly disabled for that specific
attribute from its direct or indirect containing type. Default value constraints may only take the form of
equality of the attribute to a constant expression. Disabling a default value is done with the default disable
constraint form.

17.1.10.1 DSL syntax

constraint_body item ::=

| default hierarchical id == constant expression ;

| default disable hierarchical id ;

Syntax 106—DSL: Default constraints

The following also apply:

a)

b)

¢)

d)

g

A default value constraint has the same semantics as the corresponding equality constraint, unless
explicitly disabled. The equality must hold, and conflict with other constraints shall be flagged as a
contradiction.

A default disable constraint is a directive to remove default constraints on the designated attribute,
if any are specified.

hierarchical_id for both default and default disable constraints shall be a random attribute (a field
with rand modifier). It shall be an error to apply a default constraint on a non-rand attribute.
Multiple default constraints and default disable constraints may be applied to the same attribute,
with the following precedence rules:

1) A constraint from a higher-level containing context overrides one from a lower-level contain-
ing context.

2) A constraint from a derived type context overrides one from a base type context.
3) A constraint overrides another in the same type context if it occurs later in the code.

default value constraints and default disable constraints may be applied to an attribute of an aggre-
gate data type. The semantics in this case are equivalent to applying the corresponding constraints to
all the rand scalar attributes it comprises. In particular, applying a default disable constraint to an
attribute of an aggregate data type disables default value constraints on all attributes under it.

default and default disable constraints may not be conditioned on non-constant expressions.

default and default disable constraints may not be used under dynamic constraints (constraints pre-
fixed with the dynamic modifier).

17.1.10.2 C++ syntax

The corresponding C++ syntax for Syntax 106 is shown in Syntax 107.

Copyright © 2021 Accellera. All rights reserved.
240

Portable Test and Stimulus Standard 2.0 — April 2021

pss::default_value

Defined in pss/default_value.h (see C.23).
class default value;

Declare a default value constraint.

Member functions

template <class T> default value(const rand attr<T>& attribute,
const detail::AlgebExpré& default expr) :constructor

pss::default_disable

Defined in pss/default_disable.h (see C.22).
class default disable;
Declare a default disable constraint.

Member functions

template <class T> default disable(const rand attr<T>& attribute) : constructor
Syntax 107—C++: Default constraints

17.1.10.3 Examples

In Example 184, my struct has two attributes, and a default value constraint on one of them. This struct
is instantiated three times under my action.

struct my struct {
rand int in [0..3] attrl;
constraint default attrl == 0; // (1)

rand int in [0..3] attr2;
constraint attrl < attr2; // (2)
i

action my action {
rand my struct sl;

rand my struct s2;
constraint default s2.attrl == 2; // (3)

rand my struct s3;
constraint default disable s3.attrl; // (4)
constraint s3.attrl > 0; // (5)

Example 184—DSL: Use of default value constraints

Copyright © 2021 Accellera. All rights reserved.
241

Portable Test and Stimulus Standard 2.0 — April 2021

When randomizing my action, sl.attrl isresolved to O because of constraint (1), and s1.attr2 is
randomized in the domain 1. . 3 because of constraint (2). s2.attrl is resolved to 2, because constraint
(3) overrides constraint (1), and s2 .attr2 is resolved to 3 because of constraint (2). Within s 3, constraint
(1) was disabled by (4), and has no effect. Due to constraints (2) and (5), s3.attrl is randomized in the
domain 1. .2 and s3.attr2 in the domain 2. . 3 such that s3.attrl isless than s3.attr2.

Example 185 is the equivalent of Example 184 above in C++.

class my struct : public structure {
PSS CTOR (my struct, structure);
rand attr<int> attrl {"attrl", range(0,3)};
constraint default cl {default value{ attrl, 0}};

rand attr<int> attr2 {"attr2", range(0,3)};
constraint cl {attrl < attr2};

}i

type decl<my struct> my struct type;

class my action : public action {
PSS CTOR(my action, action);
rand attr<my struct> sl {"sl1l"};

rand attr<my struct> s2 {"s2"};
constraint default s2 {default value {s2->attrl, 2} };

rand attr<my struct> s3 {"s3"};
constraint default s3 {default disable {s3->attrl} };
constraint cl {s3->attrl > 0};

bi

type decl<my action> my action type;

Example 185—C++: Use of default value constraints

Copyright © 2021 Accellera. All rights reserved.
242

Portable Test and Stimulus Standard 2.0 — April 2021

In Example 186 below, two attributes of my action have default value constraints. If
my derived action israndomized, attrl isresolved to 0, because default constraint (1) is disabled
(3) and a different constraint is in effect (4). However, there is no consistent assignment to attr2, because
both default constraint (2) and the regular constraint (5) are in effect and conflicting.

action my action {
rand int attrl;
constraint default attrl == -1; // (1)

rand int attr2;
constraint default attr2 == -1; // (2)
}i

action my derived action : my action {
constraint {

default disable attrl; // (3)
attrl == 0; // (4) OK
}
constraint attr2 == 0; // (5) contradiction!

)}z

Example 186—DSL: Contradiction with default value constraints

Example 187 below shows how default value constraints and default disable constraints apply to aggregate
data types. A default value constraint is placed on an array as a whole (1). Under my action, for instance
s1 of the struct, the default is replaced by another for a specific element (3), while the other elements retain
their original default. Constraint (4) disables the default for all array elements under s2, and they are
randomized over their full domain. Constraint (5) disables defaults of all attributes under the struct,
including the 4 arr elements and at tr. A subsequent constraint determines that s3 . attr randomizes to
50.

struct my struct {
rand array<int,4> arr;
constraint default arr == {0, 10, 20, 30}; // (1)

rand int attr;
constraint default attr == 40; // (2)
}i

action my action {
rand my struct sl, s2, s3;

constraint default sl.arr([3] == 100; // (3)
constraint default disable s2.arr; // (4)
constraint default disable s3; // (5)

constraint s3.attr == 50;

}i

Example 187—DSL: Default value constraints on compound data types

Copyright © 2021 Accellera. All rights reserved.
243

Portable Test and Stimulus Standard 2.0 — April 2021

17.2 Scheduling constraints

Scheduling constraints relate two or more actions or sub-activities from a scheduling point of view.
Scheduling constraints do not themselves introduce new action traversals. Rather, they affect actions
explicitly traversed in contexts that do not already dictate specific relative scheduling. Such contexts
necessarily involve actions directly or indirectly under a schedule statement (see 13.3.5). Similarly,
scheduling constraints can be applied to named sub-activities, see Syntax 108.

17.2.1 DSL syntax

activity scheduling_constraint ::= constraint (parallel | sequence)
{ hierarchical id, hierarchical id {, hierarchical id } } ;

Syntax 108—DSL: Scheduling constraint statement

The following also apply:

a)

b)

¢)

d)

e)

constraint sequence schedules the related actions so that each completes before the next one starts
(equivalent to a sequential activity block, see 13.3.3).

constraint parallel schedules the related actions such that they are invoked in a synchronized way
and then proceed without further synchronization until their completion (equivalent to a parallel
activity statement, see 13.3.4).

Scheduling constraints may not be applied to action handles that are traversed multiple times. In par-
ticular, they may not be applied to actions traversed inside an iterative statement: repeat, repeat-
while, and foreach (see 13.4). However, the iterative statement itself, as a named sub-activity, can
be related in scheduling constraints.

Scheduling constraints involving action-handle variables that are not traversed at all, or are traversed
under branches not actually chosen from select or if statements (see 13.4), hold vacuously.

Scheduling constraints shall not undo or conflict with any scheduling requirements of the related
actions.

NOTE—PSS/C++ does not support scheduling constraints.

Copyright © 2021 Accellera. All rights reserved.
244

Portable Test and Stimulus Standard 2.0 — April 2021

17.2.2 Example

Example 188 demonstrates the use of a scheduling constraint. In it, compound action my sub flow
specifies an activity in which action a is executed, followed by the group b, c, and d, with an unspecified
scheduling relation between them. Action my top flow schedules two executions of my sub flow,
relating their sub-actions using scheduling constraints.

action my sub flow {
A a; B b; Cc; D d;

activity {
sequence {
ay
schedule {
b; c; d;

action my top flow {
my sub flow sfl, sf2;

activity {
schedule {
sfl;
sf2;
bi
}:

constraint sequence {sfl.a, sf2.b};
constraint parallel {sfl.b, sf2.b, sf2.d};

Example 188—DSL: Scheduling constraints

Copyright © 2021 Accellera. All rights reserved.
245

Portable Test and Stimulus Standard 2.0 — April 2021

17.3 Sequencing constraints on state objects

A pool of state type stores exactly one state object at any given time during the execution of a test scenario,
thus serving as a state variable (see 16.4). Any action that outputs a state object to a pool is considered a
state transition with respect to that state variable. Within the context of a state type, reference can be made to
attributes of the previous state, relating them in Boolean expressions to attributes values of this state. This is

done by using the built-in reference variable prev (see 14.3).

NOTE—Any constraint in which prewv occurs is vacuously satisfied in the context of the initial state object.

In Example 189 and Example 190, the first constraint in power state s determines that the value of
domain B may only decrement by 1, remain the same, or increment by 1 between consecutive states. The
second constraint determines that if a domain C in any given state is O, the subsequent state has a
domain C of 0 or 1 and domain B is 1. These rules apply equally to the output of the two actions

declared under component power ctrl c.

state power state s {
rand int in [0..3] domain A, domain B, domain C;

constraint domain B in { prev.domain B - 1,
prev.domain B,
prev.domain B + 1};

constraint prev.domain C==0 -> domain C in [0,1]

b

component power ctrl c {
pool power state s psvar;
bind psvar *;

action power transl ({
output power state s next state;

i

action power trans2 ({
output power state s next state;
constraint next state.domain C == 0;

b

domain B==0;

Example 189—DSL: Sequencing constraints

Copyright © 2021 Accellera. All rights reserved.
246

Portable Test and Stimulus Standard 2.0 — April 2021

struct power state s : public state {
rand attr<int> domain A { "domain A", range(0,3) };
rand attr<int> domain B { "domain B", range(0,3) };
rand attr<int> domain C { "domain C", range(0,3) };
constraint cl { in(domain B,
range (prev (this)->domain B-1)
(prev (this)->domain B)
(prev (this)->domain B+1))
b
constraint c2 { if then {
cond (prev(this)->domain C == 0),
in(domain C, range(0,1)) || domain B == 0 } };

b

class power ctrl c : public component {
pool <power state s> psvar {"psvar"};
bind psvar bind {psvar};

class power trans : public action ({

output <power state s> next state {"next state"};
bi
type decl<power trans> power trans decl;

class power trans2 : public action {
output <power state s> next state {"next state"};
constraint c¢ { next state->domain C == 0 };

}i

type decl<power trans2> power trans2 decl;

b

Example 190—C++: Sequencing constraints

17.4 Randomization process

PSS supports randomization of plain-data type fields associated with scenario elements, as well as
randomization of different relations between scenario elements, such as scheduling, resource allocation, and
data flow. Moreover, the language supports specifying the order of random value selection, coupled with the
flow of execution, in a compound action’s sub-activity, the activity clause. Activity-based random value
selection is performed with specific rules to simplify activity composition and reuse and minimize
complexity for the user.

Random attribute fields of struct type are randomized as a unit. Traversal of a sub-action field triggers
randomization of random attribute fields of the action and the resolution of its flow/resource object
references. This is followed by evaluation of the action’s activity if the action is compound.

Copyright © 2021 Accellera. All rights reserved.
247

Portable Test and Stimulus Standard 2.0 — April 2021

17.4.1 Random attribute fields
This section describes the rules that govern whether an element is considered randomizable.
17.4.1.1 Semantics

a) Struct attribute fields qualified with the rand keyword are randomized if a field of that struct type is
also qualified with the rand keyword.

b) Action attribute fields qualified with the rand keyword are randomized at the beginning of action
execution. In the case of compound actions, rand attribute fields are randomized prior to the execu-
tion of the activity and, in all cases, prior to the execution of the action’s exec blocks (except
pre_solve, see 17.4.10).

NOTE—It is often helpful to directly traverse attribute fields within an activity. This is equivalent to creating an inter-
mediate action with a random attribute field of the plain-data type.

17.4.1.2 Examples

In Example 191 and Example 192, struct S1 contains two attribute fields. Attribute field a is qualified with
the rand keyword, while b is not. Struct S2 creates two attribute fields of type S1. Attribute field s1 1 is
also qualified with the rand keyword. s1 1.a will be randomized, while s1 1 .b will not. Attribute field
s1 2 isnot qualified with the rand keyword, so neither s1 _2.anor s1_2.Db will be randomized.

struct S1 {
rand bit[3:0] ar
bit[3:0] b;
}

struct S2 {
rand S1 sl 1;
S1 sl 2;

Example 191—DSL: Struct rand and non-rand fields

class S1 : public structure {
rand attr<bit> a { "a", width(3,0) };
attr<bit> b { "b", width (3,0) };

}i

class S2 : public structure {
rand attr<S1l> sl 1 {"sl 1"};
attr<sl> sl 2 {"sl1l 2"};

}i

Example 192—C++: Struct rand and non-rand fields

Example 193 and Example 194 show two actions, each containing a rand-qualified data field (A: : a and
B: :b). Action B also contains two fields of action type A (a_1 and a_2). When action B is executed, a
value is assigned to the random attribute field b. Next, the activity body is executed. This involves assigning
avaluetoa 1.a andsubsequentlytoa 2.a.

Copyright © 2021 Accellera. All rights reserved.
248

Portable Test and Stimulus Standard 2.0 — April 2021

action A {
rand bit[3:0] a;
}

action B {
A al, a2;
rand bit[3:0] b;

activity {
a 1l;
a 2;

}

Example 193—DSL: Action rand-qualified fields

class A : public action {
rand attr<bit> a {"a", width(3,0) };
b

class B : public action {
action handle<A> a 1 { "a 1"}, a 2 {"a 2"};
rand attr<bit> b { "b", width (3, 0) };

activity act {
al,
a2
b
b

Example 194—C++: Action rand-qualified fields

Example 195 and Example 196 show an action-qualified field in action B named

a_bit. The PSS

processing tool assigns a value to a_bit when it is traversed in the activity body. The semantics are

identical to assigning a value to the rand-qualified action field A: : a.

action A {
rand bit[3:0] a;
}

action B {
action bit[3:0] a bit;
A a 1;

activity {
a bit;
a l;

}

Example 195—DSL: Action-qualified fields

Copyright © 2021 Accellera. All rights reserved.
249

Portable Test and Stimulus Standard 2.0 — April 2021

class A : public action {
rand attr<bit> a {"a", width(3,0) };
b

class B : public action {
action attr<bit> a bit { "a bit", width (3, 0) };
action handle<A> a 1 { "a 1"};

activity act {
a bit,
al
b
b

Example 196—C++: Action-qualified fields

17.4.2 Randomization of flow objects

When an action is randomized, its input and output fields are assigned a reference to a flow object of the
respective type. On entry to any of the action’s exec blocks (except pre_solve, see 22.1.3), as well as its
activity clause, values for all rand data attributes accessible through its inputs and outputs fields are
resolved. The values accessible in these contexts satisfy all constraints. Constraints can be placed on
attribute fields from the immediate type context, from a containing struct or action at any level or via the
input/output fields of actions.

The same flow object may be referenced by an action outputting it and one or more actions inputting it. The
binding of inputs to outputs may be explicitly specified in an activity clause or may be left unspecified. In
cases where binding is left unspecified, the counterpart action of a flow object’s input/output may already be
one explicitly traversed in an activity or it may be introduced implicitly by the PSS processing tool to satisfy
the binding rules (see Clause 18). In all of these cases, value selection for the data attributes of a flow object
shall satisfy all constraints coming from the action that outputs it and actions that input it.

Consider the model in Example 197 and Example 198. Assume a scenario is generated starting from action
test. The traversal of action writel is scheduled, followed by the traversal of action read. When read
is randomized, its input in_obJj must be resolved. Every buffer object shall be the output of some action.
The activity does not explicitly specify the binding of read’s input to any action’s output, but it must be
resolved regardless. Action writel outputs a mem obj whose dat is in the range 1 to 5, due to a
constraint in action writel. But, dat of the mem obj instance read inputs must be in the range 8 to 12.
So read.in obj cannot be bound to writel.out obj without violating a constraint. The PSS
processing tool shall schedule another action of type write2 at some point prior to read, whose
mem_obj is bound to read’s input. In selecting the value of read.in obj.dat, the PSS processing
tool shall consider the following:

— dat is an even integer, due to the constraint in mem_obj.
— dat isin the range 6 to 10, due to a constraint in write?2.
— dat isin the range 8 to 12, due to a constraint in read.

This restricts the legal values of read.in obj.dat to either 8 or 10.

Copyright © 2021 Accellera. All rights reserved.
250

Portable Test and Stimulus Standard 2.0 — April 2021

component top {
buffer mem obj {
rand int dat;
constraint dat%$2 == 0; // dat must be even

}

action writel {
output mem obj out obj;
constraint out obj.dat in [1..5];

action write2 {
output mem obj out obj;
constraint out obj.dat in [6..10];

action read {
input mem obj in obj;
constraint in obj.dat in [8..12];

action test {
activity {
do writel;
do read;

Example 197—DSL: Randomizing flow object attributes

Copyright © 2021 Accellera. All rights reserved.
251

Portable Test and Stimulus Standard 2.0 — April 2021

class top : public component {
class mem obj : public buffer {
rand attr<int> dat {"dat"};
constraint ¢ { dat%2 == 0 }; // dat must be even

b

class writel : public action {
output<mem obj> out obj {"out obj"};
constraint c¢ {in (out obj->dat, range(l,5)}
}i
type decl<writel> writel decl;

class write2 : public action {
output<mem obj> out obj {"out obj"};
constraint c¢ {in (out obj->dat, range(6,10)}
bi
type decl<write2> write2 decl;

class read : public action {
input<mem obj> in obj {"in obj"};
constraint c¢ {in (in_obj->dat, range(8,12)}
}i
type decl<read> read decl;

class test : public action {
activity activity {
action handle<writel>(),
action handle<read> ()
i
}i
type decl<test> test decl;
}i

Example 198—C++: Randomizing flow object attributes

17.4.3 Randomization of resource objects

When an action is randomized, its resource claim fields (of resource type declared with lock / share
modifiers, see 15.1) are assigned a reference to a resource object of the respective type. On entry to any of
the action’s exec blocks (except pre_solve, see 22.1.3) or its activity clause, values for all random attribute
fields accessible through its resource fields are resolved. The same resource object may be referenced by any
number of actions, given that no two concurrent actions lock it (see 15.2). Value selection for random
attribute fields of a resource object satisfy constraints coming from all actions to which it was assigned,
either in lock or share mode.

Consider the model in Example 199 and Example 200. Assume a scenario is generated starting from action
test. In this scenario, three actions are scheduled to execute in parallel: al, a2, and a3, followed
sequentially by a traversal of a4. In the parallel statement, action a3 of type do_something else shall
be exclusively assigned one of the two instances of resource type rsrc obj, since
do something else claims it in lock mode. Therefore, the other two actions, of type
do_something, necessarily share the other instance. When selecting the value of attribute kind for that
instance, the PSS processing tool considers the following constraints:

— kind is an enumeration whose domain has the values 2, B, C, and D.

Copyright © 2021 Accellera. All rights reserved.
252

Portable Test and Stimulus Standard 2.0 — April 2021

— kindisnot A, due to a constraint in do_something.

— al.my rsrc_inst is referencing the same rsrc obj instance as a2.my rsrc_inst, as
there would be a resource conflict otherwise between one of these actions and a 3.

— kind is not B, due to an in-line constraint on al.

— kindis not C, due to an in-line constraint on a2.
D is the only legal value for al .my rsrc inst.kindand a2.my rsrc inst.kind.

Since there are only two instances of rsrc_obj in rsrc_pool, and one of the instances is claimed via
the share in a1 and a2, the other instance will be locked by a 3. In order to determine the value of its kind
field, we must consider the in-line constraint on the traversal of a4. Since a4 .my rsrc_inst.kindis
constrained to the value A, this must be a different instance from the one shared by al and a2. Therefore,
this is the same instance that is claimed by a3, and therefore a3.my rsrc_ inst.kind shall also have
the value of A.

component top {
enum rsrc_kind e {A, B, C, D};

resource rsrc_obj {
rand rsrc_kind e kind;

}

pool[2] rsrc obj rsrc pool;
bind rsrc pool *;

action do_something {
share rsrc obj my rsrc inst;
constraint my rsrc inst.kind != A;

action do_something else {
lock rsrc obj my rsrc inst;

}

action test {
do something al, a2;
do something else a3, a4;
activity {
parallel {
al { my rsrc inst.kind != B; };
a2 { my rsrc inst.kind != C; };
a3;
}

a4 with { my rsrc inst.kind == A; };

Example 199—DSL: Randomizing resource object attributes

Copyright © 2021 Accellera. All rights reserved.
253

Portable Test and Stimulus Standard 2.0 — April 2021

class top : public component {
PSS _ENUM(rsrc_kind e, A, B, C, D);

class rsrc_obj : public resource {
rand attr<rsrc kind e> kind {"kind"};
}i

pool<rsrc obj> rsrc pool {"rsrc pool", 2};
bind bl {rsrc pool};

class do something : public action {
share<rsrc_obj> my rsrc inst {"my rsrc inst"};
constraint ¢ { my rsrc inst->kind != rsrc kind e::A };
b
type decl<do something> do something decl;

class do something else : public action {
lock<rsrc obj> my rsrc inst {"my rsrc inst"};
}i

type decl<do something else> do something else decl;
class test : public action {
action handle<do something> al {"al"}, a2 {"a2"};

action handle<do something else> a3 {"a3"}, a4 {"ad"};

activity act {

parallel {
al.with (al->my rsrc inst->kind != rsrc kind e::B),
a2.with (a2->my rsrc inst->kind != rsrc kind e::C),
a3

}

a4.with (ad4->my rsrc inst->kind == rsrc _kind e::A)

}i
}i
type decl<test> test decl;
}i

Example 200—C++: Randomizing resource object attributes

17.4.4 Randomization of component assignment

When an action is randomized, its association with a component instance is determined. The built-in field
comp is assigned a reference to the selected component instance. The assignment shall satisfy constraints
where comp fields occur (see 10.6). Furthermore, the assignment of an action’s comp field corresponds to
the pools in which its inputs, outputs, and resources reside. If action a is assigned resource instance r, r is
taken out the pool bound to a’s resource reference field in the context of the component instance assigned to
a. If action a outputs a flow object which action b inputs, both output and input reference fields shall be
bound to the same pool under a’s component and b’s component respectively. See Clause 16 for more on
pool binding.

17.4.5 Random value selection order
A PSS processing tool conceptually assigns values to sub-action fields of the action in the order they are

encountered in the activity. On entry into an activity, the value of plain-data fields qualified with action and
rand sub-fields of action-type fields are considered to be undefined.

Copyright © 2021 Accellera. All rights reserved.
254

Portable Test and Stimulus Standard 2.0 — April 2021

Example 201 and Example 202 show a simple activity with three action-type fields (a, b, c). A PSS
processing tool might assign a.val=2,b.val=4, and c.val=7 on a given execution.

action A {
rand bit[3:0] val;
}

action my action {
A a, b, c;

constraint abc c {
a.val < b.val;
b.val < c.val;

}

activity {
ay
b;
c;

Example 201—DSL: Activity with random fields

class A : public action {
rand attr<bit> val {"val", width(3,0)};
b

class my action : public action ({
action handle<A> a {"a"}, b {"b"}, c {"c"};

constraint abc ¢ { "abc c",
a->val < b->val,
b->val < c->val
b
activity act {
aI
bl

Example 202—C++: Activity with random fields

17.4.6 Evaluation of expressions with action handles

Upon entry to an activity, all action handles (fields of action type) are considered uninitialized. Additionally,
action handles previously traversed in an activity are reset to their uninitialized state upon entry to an
activity block in which they are traversed again (an action handle may be traversed only once in any given
activity scope and its nested scopes (see 13.3.1.1)). This applies equally to traversals of an action handle in a
loop and to multiple occurrences of the same action handle in different activity blocks.

Copyright © 2021 Accellera. All rights reserved.
255

Portable Test and Stimulus Standard 2.0 — April 2021

The value of all attributes reachable through uninitialized action handles, including direct attributes of the
sub-actions and attributes of objects referenced by them, are unresolved. Only when all action handles in an
expression are initialized, and all accessed attributes assume definite value, can the expression be evaluated.

Constraints accessing attributes through action handles are never violated. However, they are considered
vacuously satisfied so long as these action handles are uninitialized. The Boolean expressions only need to
evaluate to frue at the point(s) in an activity when all action handles used in a constraint have been traversed.

Expressions in activity statements accessing attributes through action handles shall be illegal if they are
evaluated at a point in which any of the action handles are uninitialized. Similarly, expressions in solve-exec
(pre_solve and post_solve) statements of compound actions accessing attributes of sub-actions shall be
illegal, since these are evaluated prior to the activity (see 17.4.10), and all action handles are uninitialized at
that point. This applies equally to right-value and left-value expressions.

Example 203 shows a root action (my _action) with sub-action fields and an activity containing a loop. A
value for a . x is selected, then two sets of values for b . x and c . x are selected.

action A {
rand bit[3:0] x;
}

action my action {
A a, b, c;
constraint abc _c {
a.x < b.x;
b.x < c.x;
}
activity {
ay
repeat (2) {
b;
c; // at this point constraint 'abc_c' must hold non-vacuously

Example 203—DSL: Value selection of multiple traversals

The following breakout shows valid values that could be selected here:

Repetition a.x b.x cx

1 3 5 6
2 3 9 13

Note that b. x of the second iteration does not have to be less than c.x of the first iteration since action
handle c is uninitialized on entry to the second iteration. Note also that similar behavior would be observed
if the repeat would be unrolled, i.e., if the activity contained instead two blocks of b, ¢ in sequence.

Example 204 demonstrates two cases of illegal access of action-handle attributes. In these cases, accessing
sub-action attributes through uninitialized action handles shall be flagged as errors.

Copyright © 2021 Accellera. All rights reserved.
256

Portable Test and Stimulus Standard 2.0 — April 2021

action A {
rand bit[3:0] x;
int y;

}

action my action {
A a, b, c;

exec post solve {
a.y = b.x; // ERROR - cannot access uninitialized action handle

attributes
}
activity {
ay
if (a.x > 0) { // OK - 'a' is resolved
b;
Cy
}
{
if (c.y == a.x) { // ERROR - cannot access attributes of
// uninitialized action handle 'c.y'
b;
}
c;

Example 204—DSL.: lllegal accesses to sub-action attributes

17.4.7 Relationship lookahead

Values for random fields in an activity are selected and assigned as the fields are traversed. When selecting
a value for a random field, a PSS processing tool shall take into account both the explicit constraints on the
field and the implied constraints introduced by constraints on those fields traversed during the remainder of
the activity traversal (including those introduced by inferred actions, binding, and scheduling). This rule is
illustrated by Example 205 and Example 206.

17.4.7.1 Example 1

Example 205 and Example 206 show a simple struct with three random attribute fields and constraints
between the fields. When an instance of this struct is randomized, values for all the random attribute fields
are selected at the same time.

struct abc s {
rand bit[4] in [0..12] a val, b _val, c val;

constraint {
a val < b _val;
b val < c val;

Example 205—DSL: Struct with random fields

Copyright © 2021 Accellera. All rights reserved.
257

Portable Test and Stimulus Standard 2.0 — April 2021

class abc_s : public structure {
rand attr<bit> a val{"a val", width(4), range(0,12)},
b val{"b val", width(4), range(0,12)},
c val{"c val", width(4), range(0,12)};
constraint c {
a val < b val,
b val < c val
b
b

Example 206—C++: Struct with random fields

17.4.7.2 Example 2

Example 207 and Example 208 show a root action (my action) with three sub-action fields and an
activity that traverses these sub-action fields. It is important that the random-value selection behavior of this
activity and the struct shown in Example 205 and Example 206 are the same. If a value for a.val is
selected without knowing the relationship between a.val and b.val, the tool could select a.val=15.
When a.val=15, there is no legal value for b.val, since b.val must be greater than a.val.

a) When selecting a value for a.val, a PSS processing tool shall consider the following:

1) a.valisintherange O to 15, due to its domain.
2) Db.val isinthe range O to 15, due to its domain.
3) c.val isintherange O to 15, due to its domain.
4) a.val < b.val.

5) b.val < c.val.
This restricts the legal values of a.val to O to 13.

b) When selecting a value for b.val, a PSS processing tool shall consider the following:
1) The value selected for a.val.

2) b.valisintherange 0 to 15, due to its domain.

3) c.val isinthe range O to 15 due to its domain.
4) a.val < b.val.
5) b.val < c.val.

Copyright © 2021 Accellera. All rights reserved.
258

Portable Test and Stimulus Standard 2.0 — April 2021

action A {
rand bit[3:0] val;

action my action {
A a, b, c;

constraint abc c {
a.val < b.val;
b.val < c.val;
}
activity {
ay
b;
c;

Example 207—DSL: Activity with random fields

class A : public action {
rand attr<bit> val {"val", width(3,0)};
}i

class my action : public action {
action handle<A> a {"a"}, b {"b"}, c {"c"};

constraint abc ¢ { "abc c",
a->val < b->val,
b->val < c->val

i

activity act {
a,
br
c
}i
bi

Example 208—C++: Activity with random fields

Copyright © 2021 Accellera. All rights reserved.
259

Portable Test and Stimulus Standard 2.0 — April 2021

17.4.8 Lookahead and sub-actions

Lookahead shall be performed across traversal of sub-action fields and must comprehend the relationships
between action attribute fields.

Example 209 and Example 210 show an action named sub that has three sub-action fields of type A, with
constraint relationships between those field values. A top-level action has a sub-action field of type A and
type sub, with a constraint between these two action-type fields. When selecting a value for the
top_action.v.val random attribute field, a PSS processing tool shall consider the following:

— top_action.sl.a.val == top_action.v.val

— top action.sl.a.val < top_action.sl.b.val

This implies that top.v.val shall be less than 14 to satisfy the top action.sl.a.val <
top _action.sl.b.val constraint.

component top {
action A {
rand bit[3:0] wval;
}

action sub {
A a, b, c;

constraint abc c {
a.val < b.val;
b.val < c.val;

}

activity {
ay
b;
c;

}
action top action {
A v;

sub sl;

constraint c {

sl.a.val == v.val;
}
activity {

'

sl;

Example 209—DSL: Sub-activity traversal

Copyright © 2021 Accellera. All rights reserved.
260

Portable Test and Stimulus Standard 2.0 — April 2021

class top : public component {
class A : public action {
rand attr<bit> val {"val", width(3,0)};
}i
type decl<A> A decl;

class sub : public action {
action handle<A> a {"a"}, b {"b"}, c {"c"};

constraint abc ¢ { "abc c",
a->val < b->val,
b->val < c->val

i

activity act {
al
bl
C
i
i
type_decl<sub> sub_decl;

class top_action : public action {
action handle<A> v {"v"};
action handle<sub> sl {"sl1l"};

constraint ¢ { "c¢", sl->a->val == v->val };
activity act {
\%
sl
}i
}i
type decl<top action> top action decl;
b

Example 210—C++: Sub-activity traversal

Copyright © 2021 Accellera. All rights reserved.
261

Portable Test and Stimulus Standard 2.0 — April 2021

17.4.9 Lookahead and dynamic constraints

Dynamic constraints introduce traversal-dependent constraints. A PSS processing tool must account for
these additional constraints when making random attribute field value selections. A dynamic constraint shall
hold for the entire activity branch on which it is referenced, as well to the remainder of the activity.

Example 211 and Example 212 show an activity with two dynamic constraints which are mutually
exclusive. If the first branch is selected, b.val <= 5and b.val < a.val. If the second branch is
selected,b.val <= 7 andb.val > a.val.A PSS processing tool shall select a value for a . val such
that a legal value for b.val also exists (presuming this is possible).

Given the dynamic constraints, legal value ranges for a.val are 1 to 15 for the first branch and 0 to 6 for
the second branch.

action A {
rand bit[3:0] val;
}

action dyn {
A a, b;

dynamic constraint dl {
b.val < a.val;
b.val <= 5;

}

dynamic constraint d2 {
b.val > a.val;
b.val <= 7;

}

activity {
ay
select {
dl;
dz;
}
b;

Example 211—DSL: Activity with dynamic constraints

Copyright © 2021 Accellera. All rights reserved.
262

Portable Test and Stimulus Standard 2.0 — April 2021

class A : public action {

rand attr<bit> val {"val", width(3,0)};

class dyn : public action {

action handle<A> a {"a"}, b {"b"};

dynamic constraint dl1 { "d1",
b->val < a->val,
b->val <= 5

i

dynamic_constraint d2 { "d2",
b->val > a->val,
b->val <= 7

b

activity act {
a,
select {
di,
dz
}I
b

b

Example 212—C++: Activity with dynamic constraints

17.4.10 pre_solve and post_solve exec blocks

The pre_solve and post_solve exec blocks enable external code to participate in the solve process.
pre_solve and post_solve exec blocks may appear in struct and action type declarations. Statements in
pre_solve blocks are used to set non-random attribute fields that are subsequently read by the solver during
the solve process. Statements in pre_solve blocks can read the values of non-random attribute fields and
their non-random children. Statements in pre_solve blocks cannot read values of random fields or their
children, since their values have not yet been set. Statements in post_solve blocks are evaluated after the
solver has resolved values for random attribute fields and are used to set the values for non-random attribute

fields based on randomly-selected values.

The execution order of pre_solve and post_solve exec blocks, respectively, corresponds to the order random

attribute fields are assigned by the solver. The ordering rules are as follows:

a)

b)

Order within a compound action is top-down—both the pre_solve and post_solve exec blocks,
respectively, of a containing action are executed before any of its sub-actions are traversed, and,
hence, before the pre_solve and post_solve, respectively, of its sub-actions.

Order between actions follows their relative scheduling in the scenario: if action a; is scheduled
before a,, a;’s pre_solve and post_solve blocks, if any, are called before the corresponding block of

Order for flow objects (instances of struct types declared with a buffer, stream, or state modifier)
follows the order of their flow in the scenario: a flow object’s pre_solve or post_solve exec block is
called after the corresponding exec block of its outputting action and before that of its inputting
action(s).

Copyright © 2021 Accellera. All rights reserved.
263

Portable Test and Stimulus Standard 2.0 — April 2021

d) A resource object’s pre_solve or post_solve exec block is called before the corresponding exec
block of all actions referencing it, regardless of their use mode (lock or shared).

e) Order within an aggregate data type (nested struct and collection fields) is top-down—the exec block
of the containing instance is executed before that of the contained.

PSS does not specify the execution order in other cases. In particular, any relative order of execution for
sibling random struct attributes is legitimate and so is any order for actions scheduled in parallel where no
flow objects are exchanged between them.

See 22.1 for more information on the exec block construct.
17.4.10.1 Example 1

Example 213 and Example 214 show a top-level struct S2 that has rand and non-rand scalar fields, as well
as two fields of struct type S1. When an instance of S2 is randomized, the exec block of S2 is evaluated
first, but the execution for the two S1 instances can be in any order. The following is one such possible
order:

a) pre_solvein S2

b) pre_solvein S2.s1 2

c) presolveinS2.s1 1

d) assignment of attribute values
e) post_solvein S2

f) post_solveinS2.s1 1

g) post_solvein S2.s1 2

Copyright © 2021 Accellera. All rights reserved.
264

Portable Test and Stimulus Standard 2.0 — April 2021

function bit[5:0] get init val();
function bit[5:0] get exp val(bit[5:0] stim val);

struct S1 {

bit[5:0] init val;
rand bit[5:0] rand val;
bit[5:0] exp val;

exec pre solve {

init val

}

= get init val();

constraint rand val c {

rand val

}

<= init val+10;

exec post solve ({

exp val

}

struct S2 {

= get exp val (rand val);

bit[5:0] init val;
rand bit[5:0] rand val;
bit[5:0] exp val;

rand S1 sl 1, sl 2;

exec pre solve {

init val

}

= get init val();

constraint rand val c {

rand val

}

exec postiso

> init val;

lve {

exp val = get exp val(rand val);

}

Example 213—DSL: pre_solve/post_solve

Copyright © 2021 Accellera. All rights reserved.
265

Portable Test and Stimulus Standard 2.0 — April 2021

function<result<bit> () > get init val {"get init val",
result<bit> (width (5,0))

function<result<bit> (in arg<bit>) > get exp val {"get exp val",
result<bit>(width(5,0)),
in _arg<bit>("stim val", width(5,0))

}i

class S1 : public structure {
attr<bit> init val {"init val", width(5,0)};
rand attr<bit> rand val {"rand val", width(5,0)};
attr<bit> exp val {"exp val", width(5,0)};

exec pre solve {
exec::pre_solve,
init val = get init val()

b
constraint rand val c¢ { rand val <= init val+10 };

exec post solve ({
exec::post solve,
exp val = get exp val (rand val)
i
i

class S2 : public structure {
attr<bit> init val {"init val", width(5,0)};
rand attr<bit> rand val {"rand val", width(5,0)};
attr<bit> exp val {"exp val", width(5,0)};
rand attr<sl> sl 1 {"sl1l 1"}, sl 2 {"sl 2"};

exec pre solve {
exec::pre_solve,
init val = get init val()
}i

constraint rand val c¢ { rand val > init val };

exec post solve {
exec::post_solve,
exp val = get exp val(rand val)
bi

Example 214—C++: pre_solve/post_solve

Copyright © 2021 Accellera. All rights reserved.
266

Portable Test and Stimulus Standard 2.0 — April 2021

17.4.10.2 Example 2

Example 215 and Example 216 illustrate the relative order of execution for post_solve exec blocks of a
containing action test, two sub-actions: read and write, and a buffer object exchanged between them.

The calls therein are executed as follows:
a) post_solve in test
b) post_solveinwrite
c) post_solve in mem ob]

d) post_solvein read

buffer mem obj {
exec post solve { ... }
b

action write {
output mem obj out obj;
exec post solve { ... }
}i

action read {
input mem obj in obj;
exec post solve { ... }

b

action test {
write wr;
read rd;

activity {

wWr;

rd;

bind wr.out obj rd.in obj;
}
exec post solve { ... }

b

Example 215—DSL: post_solve ordering between action and flow objects

Copyright © 2021 Accellera. All rights reserved.
267

Portable Test and Stimulus Standard 2.0 — April 2021

class mem obj : public buffer {
exec post solve { ... };
}i

class write : public action {
output<mem obj> out obj {"out obj"};
exec post solve { ... };

b

class read : public action {
input<mem ob3j> in obj {"in obj"};
exec post solve { ... };

b

class test : public action {
action handle<write> wr{"wr"};
action handle<read> rd {"rd"};

activity act {

wr,

rd

bind bl { wr->out obj, rd->in obj};
}i
exec post solve { ... };

b

Example 216—C++: post_solve ordering between action and flow objects

Copyright © 2021 Accellera. All rights reserved.
268

Portable Test and Stimulus Standard 2.0 — April 2021

17.4.11 Body blocks and sampling external data

exec body blocks, or functions invoked by them, can assign values to attribute fields. exec body blocks are
evaluated for atomic actions as part of the test execution on the target platform (see 22.1). The impact of any
field values modified by an exec body block is evaluated after the entire exec body block has completed.

Example 217 and Example 218 show an exec body block that assigns two non-rand attribute fields. The
impact of the new values applied to y1 and y2 are evaluated against the constraint system after the exec
body block completes execution. It shall be illegal if the new values of y1 and y2 conflict with other
attribute field values and constraints. Backtracking is not performed.

function bit[3:0] compute vall(bit[3:0] v);
function bit[3:0] compute val2(bit[3:0] v);
component pss top {

action A {
rand bit[3:0] x;
bit[3:0] vy1, y2;

constraint assume y c {
yl >= x && yl <= x+2;
y2 >= x && y2 <= x+3;

vyl <= y2;
}

exec body {
yl = compute vall (x);
y2 = compute val2(x);

Example 217—DSL: exec body block sampling external data

Copyright © 2021 Accellera. All rights reserved.
269

Portable Test and Stimulus Standard 2.0 — April 2021

function<result<bit> (in_arg<bit>)> compute vall {"compute vall",
result<bit>(width(3,0)),
in arg<bit>("v", width(3,0))

}r

function<result<bit> (in arg<bit>)> compute val2 {"compute val2",
result<bit> (width(3,0)),
in arg<bit>("v", width(3,0))

bi

class pss_top : public component {
class A : public action {
rand attr<bit> x {"x", width(3,0)};
attr<bit> yl{"yl", width(3,0)}, y2{"y2", width(3,0)};

constraint assume y c {
vyl >= x && yl <= x+2,
y2 >= x && y2 <= x+3,
vyl <= y2

b

exec body {
exec: :body,
sequence {
yl = compute vall(x),
y2 = compute val2(x)
}
}i
}i
type decl<A> A decl;

Example 218—C++: exec body block sampling external data

Copyright © 2021 Accellera. All rights reserved.
270

Portable Test and Stimulus Standard 2.0 — April 2021

18. Action inferencing

Perhaps the most powerful feature of PSS is the ability to focus purely on the user’s verification intent, while
delegating the means to achieve that intent. Previous clauses have introduced the semantic concepts to
define such abstract specifications of intent. The modeling constructs and semantic rules thus defined for a
portable stimulus model allow a tool to generate a number of scenarios from a single (partial) specification
to implement the desired intent.

Beginning with a root action, which may contain an activity, a number of actions and their relative
scheduling constraints is used to specify the verification intent for a given model. The other elements of the
model, including flow objects, resources and their binding, as well as algebraic constraints throughout,
define a set of rules that shall be followed to generate a valid scenario matching the specified intent. It is
possible to fully specify a verification intent model, in which only a single valid scenario of actions may be
generated. The randomization of data fields in the actions and their respective flow and resource objects
would render this scenario as what is generally referred to as a “directed random” test, in which the actions
are fully defined, but the data applied through the actions is randomized. The data values themselves may
also be constrained so that there is only one scenario that may be generated, including fully-specified values
for all data fields, in which case the scenario would be a “directed” test.

There are a number of ways to specify the scheduling relationship between actions in a portable stimulus
model. The first, which allows explicit specification of verification intent, is via an activity. As discussed in
Clause 13, an activity may define explicit scheduling dependencies between actions, which may include
statements, such as schedule, select, if-else and others, to allow multiple scenarios to be generated even for
a fully-specified intent model. Consider Example 219 and Example 220.

component pss top {
buffer data buff s {
rand int wval;
i
pool data buff s data mem;
bind data mem *;

action A a {output data buff s dout;};
action B a {output data buff s dout;};
action C _a {input data buff s din;};
action D a {input data buff s din;};

action root a {

A a a;

B a b;

C ac;

D a d;

activity {
select {a; b;}
select {c; d;}

Example 219—DSL: Generating multiple scenarios

Copyright © 2021 Accellera. All rights reserved.
271

Portable Test and Stimulus Standard 2.0 — April 2021

class pss_top : public component {
struct data buff s : public buffer {
rand attr<int> val{"val"};

b

pool <data buff s> data mem{"data mem"};
bind bl {data mem};

class A a : public action {...
output <data buff s> dout{"dout"};
}; type decl<A a> A a decl;

class B_a : public action {...
output <data buff s> dout{"dout"};
}; type decl<B a> B a decl;

class C a : public action {...
input <data buff s> din{"din"};
}; type decl<C a> C_a decl;

class D a : public action {...
input <data buff s> din{"din"};
}; type decl<D a> D a decl;

class root a : public action {
action handle<A a> a{"a"};
action handle<B a> b{"b"};
action handle<C a> c{"c"};
action handle<D a> d{"d"};
activity act {
select {a, b},
select {c, d}
}i
bi
type decl<root a> root a decl;

b

Example 220—C++: Generating multiple scenarios

While an activity may be used to fully express the intent of a given model, it is more often used to define the
critical actions that must occur to meet the verification intent while leaving the details of how the actions
may interact unspecified. In this case, the rules defined by the rest of the model, including flow object
requirements, resource limitations and algebraic constraints, permit a tool to infer the instantiation of
additional actions as defined by the model to ensure the generation of a valid scenario that meets the critical
intent as defined by the activity.

The evaluation ordering rules for pre_solve and post_solve exec blocks of actions, objects, and structs, as
specified in 17.4.10, apply regardless of whether the actions are explicitly traversed or inferred, and whether
objects are explicitly or implicitly bound. In particular, the order conforms to the scheduling relations
between actions, such that if an action is scheduled before another, its pre_solve and post_solve execs are
evaluated before the other’s. Backtracking is not performed across exec blocks. Assignments in exec blocks
to attributes that figure in constraints may therefore lead to unsatisfied constraint errors. This applies to
inferred parts of the scenarios in the same way as to parts that are explicitly specified in activities.

Copyright © 2021 Accellera. All rights reserved.
272

Portable Test and Stimulus Standard 2.0 — April 2021

18.1 Implicit binding and action inferences

In a scenario description, the explicit binding of outputs to inputs may be left unspecified. In these cases, an
implementation shall execute a scenario that reflects a valid completion of the given partial specification in a
way that conforms to pool binding rules. If no valid scenario exists, the tool shall report an error.
Completing a partial specification may involve decisions on output-to-input binding of flow objects in
actions that are explicitly traversed. It may also involve introducing the traversal of additional actions,
beyond those explicitly traversed, to serve as the counterpart of a flow object exchange. The introduction of
an action in the execution of a scenario to complete a partially specified flow is called action inferencing.

Action inferences are necessary to make a scenario execution legal if the following conditions hold:

a) Aninput of any kind is not explicitly bound to an output, or an output of stream kind is not explicitly
bound to an input.

b) There is no explicitly traversed action available to legally bind its output/input to the unbound input/
output, i.e.,
1) There is no action that is or may be scheduled before the inputting action in the case of buffer
or state objects.

2) There is no action that is or may be scheduled in parallel to the inputting/outputting action in
the case of stream objects.

The inferencing of actions may be based on random or policy-driven (which may include specified coverage
goals) decisions of a processing tool. Actions may only be inferred so as to complete a partially-specified
flow. If all required input-to-output bindings are specified by explicit bindings to the traversed actions in the
activity, an implementation may not introduce additional actions in the execution. See Annex F for more
details on inference rules.

Consider the model in Example 221 and Example 222.

If action send data is designated as the root action, this is clearly a case of partial scenario description,
since action send data has an input and an output, each of which is not explicitly bound. The buffer input
src_data is bound to the data mem object pool, so there must be a corresponding output object also
bound to the same pool to provide the buffer object. The only action type outputting an object of the required
type that is bound to the same object pool is 1oad data. Thus, an implementation shall infer the prior
execution of load data before executing send data.

Similarly, 1oad data has a state input that is bound to the config var pool. Since the output objects
of action types setup A and setup_ B are also bound to the same pool, Load data.curr cfgcanbe
bound to the output of either setup A or setup_B, but cannot be the initial state. In the absence of other
constraints, the choice of whether to infer setup A or setup B may be randomized and the chosen
action traversal shall occur before the traversal of 1oad data.

Moreover, send data has a stream output out data, which shall be bound to the corresponding input
of another action that is also bound to the data_ bus pool. So, an implementation shall infer the scheduling
of an action of type receive data inparallel to send data.

Copyright © 2021 Accellera. All rights reserved.
273

Portable Test and Stimulus Standard 2.0 — April 2021

component pss_top {
state config s {};
pool config s config var;
bind config var *;

buffer data buff s {};
pool data buff s data mem;
bind data mem *;

stream data stream s {};
pool data stream s data bus;
bind data bus *;

action setup A {
output config s new cfg;

b

action setup B {
output config s new cfg;
}i

action load data {
input config s curr cfg;
constraint !curr cfg.initial;
output data buff s out data;
bi

action send data {
input data buff s src data;
output data stream s out data;

b

action receive data ({
input data stream s in data;

b

Example 221—DSL: Action inferences for partially-specified flows

Copyright © 2021 Accellera. All rights reserved.
274

Portable Test and Stimulus Standard 2.0 — April 2021

class pss_top : public component {
struct config s : public state {...};

pool <config s> config var{"config var"};
bind bl {config var};

struct data buff s : public buffer {...};

pool <data buff s> data mem{"data mem"};
bind b2 {config var};

struct data stream s : public stream {...};

pool <data stream s> data bus{"data bus"};
bind b3 {data bus};

class setup A : public action {...
output <config s> new cfg{"new cfg");
}; type decl<setup A> setup A decl;

class setup B : public action {...
output <config s> new cfg{"new cfg");
}; type decl<setup B> setup B decl;

class load data : public action {...
input <config s> curr cfg{"curr cfg"};
constraint cl {!curr cfg->initial};
output <data buff s> out data{"out data"};
}; type_decl<load_data> load_data_decl;

class send data : public action {...
input <data buff s> src data{"src data"};
output <data stream s> out data{"out data"};
}; type decl<send data> send data decl;

class receive data : public action {...
input <data stream s> in data{"in data"};
}; type_decl<receive data> receive data_ decl;

Example 222—C++: Action inferences for partially-specified flows

Note that action inferences may be more than one level deep. The scenario executed by an implementation
shall be the transitive closure of the specified scenario per the flow object dependency relations. Consider
adding another action within the pss_top component in Example 221 and Example 222, e.g.,
// DSL
action xfer data {
input data buff s src data;
output data buff s out data;
bi
// C++
class xfer data : public action {...
input <data buff s> src data{"src data"};
output <data buff s> out data{"out data"};
}i

Copyright © 2021 Accellera. All rights reserved.
275

Portable Test and Stimulus Standard 2.0 — April 2021

In this case, the xfer data action could also be inferred, along with setup_ A or setup_ B to provide
the data_buff sinputto send data.src data.lfxfer data wereinferred, thenits src_data
input would require the additional inference of another instance of setup A, setup B, or xfer data
to provide the data buff s. This “inference chain” would continue until either an instance of setup A
or setup B is inferred, which would require no further inferencing, or the inference limit of the tool is
reached, in which case an error would be reported.

Since the type of the inferred action is randomly selected from all available compatible action types, a tool
may ensure that either setup A or setup B gets inferred before the inferencing limit is reached.

18.2 Object pools and action inferences

Action traversals may be inferred to support the flow object requirements of actions that are explicitly
traversed or have been previously inferred. The set of actions from which a traversal may be inferred is
determined by object pool bindings.

In Example 223 and Example 224, there are two object pools of type data buff s, each of which is
bound to a different set of object field references. The select statement in the activity of root a will
randomly choose either ¢ or d, each of which has a data buff s buffer input type that requires a
corresponding action be inferred to supply the buffer object. Since C_ a is bound to the same poolas A_a, if
the generated scenario chooses c, then an instance of A a shall be inferred to supply the c.din buffer
input. Similarly, if d is chosen, then an instance of B_a shall be inferred to supply the d.din buffer input.

component pss_top {
buffer data buff s {...};
pool data buff s data meml, data mem2;
bind data meml {A a.dout, C a.din};
bind data mem2 {B a.dout, D a.din};

action A a {output data buff s dout;};
action B a {output data buff s dout;};
action C a {input data buff s din;};
action D a {input data buff s din;};

action root a {
C ac;
D a d;
activity {
select {c; d;}

}

Example 223—DSL: Object pools affect inferencing

Copyright © 2021 Accellera. All rights reserved.
276

Portable Test and Stimulus Standard 2.0 — April 2021

class pss_top : public component {
struct data buff s : public buffer {... };
pool <data buff s> data meml{"data meml"}, data mem2{"data mem2");
bind bl {data meml, A a.dout, C a.din};
bind b2 {data mem2, B a.dout, D a.din};

class A a : public action {...
output <data buff s> dout{"dout");
}; type decl<A a> A a decl;

class B _a : public action {...
output <data buff s> dout{"dout");
}; type decl<B a> B a decl;

class C_a : public action {...
input <data buff s> din{"din");
}; type decl<C a> C a decl;

class D a : public action {...
input <data buff s> din{"din");
}; type decl<D a> D a decl;

action root a {
action handle<C a> c{"c"};
action handle<D a> d{"d"};

activity act {
select {c, d}
b
i
type decl<root a> root a decl;

Example 224—C++: Object pools affect inferencing

Copyright © 2021 Accellera. All rights reserved.
277

Portable Test and Stimulus Standard 2.0 — April 2021

18.3 Data constraints and action inferences

As mentioned in Clause 17, introducing data constraints on flow objects or other elements of the design may
affect the inferencing of actions. Consider a slightly modified version of Example 219 and Example 220, as

shown in Example 225 and Example 226.

Since the explicit traversal of ¢ does not constrain the val field of its input, it may be bound to the output of
either explicitly traversed action a or b; thus, there are two legal scenarios to be generated with the second
select statement evaluated to traverse action c. However, since the data constraint on the traversal of action
d is incompatible with the in-line data constraints on the explicitly-traversed actions a or b, another instance
of either A_a or B_a shall be inferred whose output shall be bound to d. din. Since there is no requirement
for the buffer output of either a or b to be bound, one of these actions shall be traversed from the first select
statement, but no other action shall be inferred.

component pss_top {
buffer data buff s {
rand int wval;
bi
pool data buff s data mem;
bind data mem *;

action A a {output data buff s dout;};
action B a {output data buff s dout;};
action C a {input data buff s din;};
action D a {input data buff s din;};

action root a {

A a a;

B a b;

C ac;

D a d;

activity {
select {a with{dout.val<5;}; b with {dout.val<5;};}
select {c; d with {din.val>5;};}

Example 225—DSL.: In-line data constraints affect action inferencing

Copyright © 2021 Accellera. All rights reserved.
278

Portable Test and Stimulus Standard 2.0 — April 2021

class pss_top public component {
struct data buff s public buffer {...
rand attr<int> val{"val"};

b

pool <data buff s> data mem{"data mem"};
bind bl {data mem};

class A a public action {...
output <data buff s> dout{"dout");

}; type decl<A a> A a decl;

class B _a public action {...
output <data buff s> dout{"dout");

}s

class C_a

b

class D a

i

type decl<B a> B a decl;

public action {...
input <data buff s> din{"din");
type decl<C a> C a decl;

public action {...
input <data buff s> din{"din");
type decl<D a> D a decl;

public action {...

class root a
action handle<A a>
action handle<B a>
action handle<C a>
action handle<D a>

activity act {

a{"a"};
b{"b"};
c{"c"};
a{"d"};

select {a.with (a->dout->val()<5),

b.with (b->dout->val ()<5) },

select {c,

d.with (d->din->val ()>5)}

i

i
type decl<root a> root a decl;

b

Example 226—C++: In-line data constraints affect action inferencing

Copyright © 2021 Accellera. All rights reserved.
279

Portable Test and Stimulus Standard 2.0 — April 2021

Consider, instead, if the in-line data constraints were declared in the action types, as shown in Example 227
and Example 228.

In this case, there is no valid action type available to provide the d.din input that satisfies its constraint as
defined in the D_a action declaration, since the only actions that may provide the data buff s type,
actions A_a and B_a, have constraints that contradict the input constraint in D_a. Therefore, the only legal
action to traverse in the second select statement is c. In fact, it would be illegal to traverse action D_a under
any circumstances for this model, given the contradictory data constraints on the flow objects.

component pss_top {
buffer data buff s {
rand int wval;
}i
pool data buff s data mem;
bind data mem *;

action A a {
output data buff s dout;
constraint {dout.val<5;}
}i
action B a {
output data buff s dout;
constraint {dout.val<5;}
b
action C a {
input data buff s din;
bi
action D _a {
input data buff s din;
constraint {din.val > 5;}

b

action root a {

A a a;

B a b;

C ac;

D a d;

activity {
select {a; b;}
select {c; d;}

Example 227—DSL: Data constraints affect action inferencing

Copyright © 2021 Accellera. All rights reserved.
280

Portable Test and Stimulus Standard 2.0 — April 2021

class pss_top : public component {...

}s

struct data buff s : public buffer {...
rand attr<int> val{"val"};

b

pool <data buff s> data mem{"data mem"};
bind bl {data mem};

class A a : public action {...
output <data buff s> dout{"dout");
constraint ¢ {dout->val < 5};

}; type decl<A a> A a decl;

class B_a : public action {...
output <data buff s> dout{"dout");
constraint ¢ {dout->val < 5};

}; type decl<B a> B a decl;

class C_a : public action {...
input <data buff s> din{"din");
}; type decl<C a> C a decl;

class D a : public action {...
input <data buff s> din{"din");
constraint ¢ {din->val > 5};

}; type decl<D a> D a decl;

class root a : public action {...
action handle<A a> a{"a"};
action handle<B a> b{"b"};
action handle<C _a> c{"c"};
action handle<D a> d{"d"};

activity act {
select {a, Db},
select {c, d}
b

}; type_decl<root_a> root_a decl;

Example 228—C++: Data constraints affect action inferencing

Copyright © 2021 Accellera. All rights reserved.
281

Portable Test and Stimulus Standard 2.0 — April 2021

19. Coverage specification constructs

The legal state space for all non-trivial verification problems is very large. Coverage goals identify key
value ranges and value combinations that need to occur in order to exercise key functionality. The
covergroup construct is used to specify these targets.

The coverage targets specified by the covergroup construct are more directly related to the test scenario
being created. As a consequence, in many cases the coverage targets would be considered coverage targets
on the “generation” side of stimulus. PSS also allows data to be sampled by calling external functions.
Coverage targets specified on data fields set by external functions can be related to the system state.

19.1 Defining the coverage model: covergroup

The covergroup construct encapsulates the specification of a coverage model. Each covergroup
specification can include the following elements:

— A set of coverage points
— Cross coverage between coverage points
— Optional formal arguments

— Coverage options

The covergroup construct is a user-defined type. There are two forms of the covergroup construct. The first
form allows an explicit type definition to be written once and instantiated multiple times in different
contexts. The second form allows an in-line specification of an anonymous covergroup type and a single
instance.

a) An explicit covergroup type can be defined in a package, component, action, or struct. In order to
be reusable, an explicit covergroup type shall specify a list of formal parameters and shall not refer-
ence fields in the scope in which it is declared. An instance of an explicit covergroup type can be
created in an action or struct. Syntax 109 and Syntax 110 define an explicit covergroup type.

b) Anin-line covergroup can be defined in an action or struct scope. An in-line covergroup can refer-
ence fields in the scope in which it is defined. 19.2 contains more information on in-line cover-
groups.

19.1.1 DSL syntax

The syntax for covergroups is shown in Syntax 109.

Copyright © 2021 Accellera. All rights reserved.
282

Portable Test and Stimulus Standard 2.0 — April 2021

covergroup_declaration ::=
covergroup covergroup_identifier (covergroup port {, covergroup_port })
{ {covergroup_body item} }
covergroup_port ::= data_type identifier
covergroup_body _item ::=
covergroup_option
| covergroup coverpoint
| covergroup_cross
| stmt_terminator
covergroup_option ::=
option . identifier = constant_expression ;

| type_option . identifier = constant_expression ;

Syntax 109—DSL: covergroup declaration

The following also apply:

a)
b)
©)

d)

The identifier associated with the covergroup declaration defines the name of the coverage model
type.

A covergroup can contain one or more coverage points. A coverage point can cover a variable or an
expression.

Each coverage point includes a set of bins associated with its sampled value. The bins can be user-
defined or automatically created by a tool. Coverage points are detailed in 19.3.

A covergroup can specify cross coverage between two or more coverage points or variables. Any
combination of more than two variables or previously declared coverage points is allowed. See also
Example 231 and Example 232.

A covergroup can also specify one or more options to control and regulate how coverage data are
structured and collected. Coverage options can be specified for the covergroup as a whole or for
specific items within the covergroup, i.c., any of its coverage points or crosses. In general, a cover-
age option specified at the covergroup level applies to all of its items unless overridden by them.
Coverage options are described in 19.6.

19.1.2 C++ syntax

The corresponding C++ syntax for Syntax 109 is shown in Syntax 110.

pss::covergroup

Defined in pss/covergroup.h (see C.14).
class covergroup;

Base class for declaring a covergroup.

Member functions

covergroup (const scope & name) :constructor

Syntax 110—C++: covergroup declaration

Copyright © 2021 Accellera. All rights reserved.
283

Portable Test and Stimulus Standard 2.0 — April 2021

19.1.3 Examples

Example 229 and Example 230 define an in-line covergroup cs1 with a single coverage point associated
with struct field color. The value of the variable color is sampled at the default sampling point: the end
of the action’s traversal in which it is randomized. Sampling is discussed in more detail in 19.7.

Because the coverage point does not explicitly define any bins, the tool automatically creates three bins, one
for each possible value of the enumeration type. Automatic bins are described in 19.3.6.

enum color e {red, green, blue};

struct s {
rand color e color;

covergroup {
c: coverpoint color;
} csl;

Example 229—DSL: Single coverage point

PSS ENUM(color e, red, green, blue);
class s: public structure {...
rand attr<color e> color {"color"};

covergroup inst<> csl {"ecsl", [&] () {
coverpoint ¢ {"c", color};

}

’

i
type decl<s> s t;

Example 230—C++: Single coverage point

Copyright © 2021 Accellera. All rights reserved.
284

Portable Test and Stimulus Standard 2.0 — April 2021

Example 231 and Example 232 creates an in-line covergroup cs2 that includes two coverage points and two
cross coverage items. Explicit coverage points labeled Offset and Hue are defined for variables
pixel offset and pixel hue. PSS implicitly declares coverage points for variables color and
pixel adr to track their cross coverage. Implicitly declared coverage points are described in 19.4.

enum color e {red, green, blue};
struct s {
rand color e color;

rand bit[3:0] pixel adr, pixel offset, pixel hue;

covergroup {

Hue : coverpoint pixel hue;
Offset : coverpoint pixel offset;
AxC: cross color, pixel adr;
all : cross color, Hue, Offset;

} cs2;

Example 231—DSL: Two coverage points and cross coverage items

PSS ENUM(color e, red, green, blue);

class s : public structure {

rand attr<color e> color {"color"};
rand attr<bit> pixel adr {"pixel adr" , width(4)};
rand attr<bit> pixel offset {"pixel offset", width(4)};
rand attr<bit> pixel hue {"pixel hue" , width(4)};
covergroup inst<> cs2 { "cs2", [&] () {

coverpoint Hue {"Hue" , pixel hue };

coverpoint Offset {"Offset", pixel offset};
cross AxC {"AxC", color, pixel adr};
cross all {"all", color, Hue, Offset};

Example 232—C++: Two coverage points and cross coverage items

19.2 covergroup instantiation

A covergroup type can be instantiated in struct and action contexts. If the covergroup declared formal
parameters, these shall be bound to variables visible in the instantiation context. Instance-specific coverage
options (see 19.6) may be specified as part of instantiation. In many cases, a covergroup is specific to the
containing type and will not be instantiated independently multiple times. In these cases, it is possible to
declare a covergroup instance in-line. In this case, the covergroup type is anonymous.

Copyright © 2021 Accellera. All rights reserved.
285

Portable Test and Stimulus Standard 2.0 — April 2021

19.2.1 DSL syntax

Syntax 111 specifies how a covergroup is instantiated and how an in-line covergroup instance is declared.

covergroup_instantiation ::=
covergroup _type instantiation
| inline_covergroup
inline_covergroup ::= covergroup { { covergroup body item } } identifier ;
covergroup_type_instantiation ::= covergroup_type_identifier covergroup identifier
(covergroup portmap_list) covergroup options_or_empty
covergroup_type_identifier ::= type_identifier
covergroup_portmap_list ::=
covergroup portmap { , covergroup portmap }
| hierarchical id_list
covergroup_portmap ::=. identifier (hierarchical id)
covergroup_options_or_empty ::=
with { { covergroup option } }

s

Syntax 111—DSL: covergroup instantiation

19.2.2 C++ syntax

The corresponding C++ syntax for Syntax 111 is shown in Syntax 112 and Syntax 113.

pss::covergroup_inst

Defined in pss/covergroup_inst.h (see C.19).
template <class T> class covergroup inst;

Class for instantiating a user-defined covergroup type.

Member functions

covergroup inst (const std::string &name, const options &opts) :constructor

template <class... R> covergroup inst (const std::string &name,
const options &opts, const R&... ports) :constructor

template <class... R> covergroup inst (const std::string &name,
const R&... ports) :constructor

Syntax 112—C++: User-defined covergroup instantiation

Copyright © 2021 Accellera. All rights reserved.
286

Portable Test and Stimulus Standard 2.0 — April 2021

pss: :covergroup_inst<c0vergr0up>
Defined in pss/covergroup_inst.h (see C.19).
template <> class covergroup inst<covergroup>;
Class for instantiating an in-line covergroup instance.
Member functions
covergroup inst (const std::string &name, const options &opts) :constructor

template <class... R> covergroup inst (const std::string &name,
std::function<void(void) > body) : constructor

Syntax 113—C++: In-line covergroup instantiation

19.2.3 Examples

Example 233 and Example 234 create a covergroup instance with a formal parameter list.

enum color e {red, green, blue};

struct s {
rand color e color;

covergroup csl(color e c) {
c : coverpoint c;

}

csl csl inst(color);

}

Example 233—DSL: Creating a covergroup instance with a formal parameter list

PSS _ENUM(color e, red, green, blue);

class s : public structure {
rand attr<color e> color {"color"};

class csl : public covergroup {...
attr<color e> c {"c"};

coverpoint cp c {"c", c};
b
type decl<csl> csl t;

covergroup inst<csl> csl inst {"csl inst", color};

b

Example 234—C++: Creating a covergroup instance with a formal parameter list

Copyright © 2021 Accellera. All rights reserved.
287

Portable Test and Stimulus Standard 2.0 — April 2021

Example 235 and Example 236 create a covergroup instance and specifying instance options.

enum color e {red, green, blue};

struct s {
rand color e color;

covergroup csl (color e color) {
c: coverpoint color;

csl csl inst (color) with {
option.at least = 2;
bi

Example 235—DSL: Creating a covergroup instance with instance options

PSS ENUM(color e, red, green, blue);

class s : public structure {
rand attr<color e> color {"color"};

class csl : public covergroup {
attr<color e> c {"c"};
coverpoint c cp {"c", c};

}i

type decl<csl> csl t;

covergroup inst<csl> csl inst {"csl inst",
options {
at least(2)
}I
color

b

Example 236—C++: Creating a covergroup instance with instance options

Example 237 and Example 238 create an in-line covergroup instance.

enum color e {red, green, blue};

struct s {
rand color e color;

covergroup {
option.at least = 2;
c: coverpoint color;
} csl inst;

Example 237—DSL: Creating an in-line covergroup instance

Copyright © 2021 Accellera. All rights reserved.
288

Portable Test and Stimulus Standard 2.0 — April 2021

PSS ENUM(color e, red, green, blue);

class s : public structure {
rand attr<color e> color {"color"};

covergroup inst<> csl inst { "csl inst", [&] () {
options {at least(2)};
coverpoint{"c", color};

Example 238—C++: Creating an in-line covergroup instance

19.3 Defining coverage points

A covergroup can contain one or more coverage points. A coverage point specifies a numeric expression or
enum that is to be covered. Each coverage point includes a set of bins associated with the sampled values of
the covered expression. The bins can be explicitly defined by the user or automatically created by the PSS
processing tool. The syntax for specifying coverage points is shown in Syntax 114, Syntax 115, Syntax 116,

and Syntax 117.

Evaluation of the coverage point expression (and of its enabling iff condition, if any) takes place when the

covergroup is sampled (see 19.7).
19.3.1 DSL syntax

The syntax for coverpoints is shown in Syntax 114.

covergroup_coverpoint ::= [[data_type] coverpoint identifier :] coverpoint
expression [iff (expression)] bins_or empty
bins_or empty ::=
{ { covergroup coverpoint body item } }
|5
covergroup_coverpoint_body item ::=
covergroup_option

| covergroup coverpoint_binspec

Syntax 114—DSL: coverpoint declaration

The following also apply:

a) A coverpoint coverage point creates a hierarchical scope and can be optionally labeled. The label
(coverpoint_identifier) designates the name of the coverage point. This name can be used to add this
coverage point to a cross coverage specification. If the coverage point is associated with a single
variable and the label is omitted, the variable name becomes the name of the coverage point. A cov-

erage point on an expression is required to specify a label.

b) A data type for the coverpoint may be specified. The data type shall be a numeric or enum type. If a

data type is specified, then a label shall also be specified.

Copyright © 2021 Accellera. All rights reserved.
289

d)

e)

2

Portable Test and Stimulus Standard 2.0 — April 2021

If a data type is specified, the coverpoint expression shall be assignment compatible with the data
type. Values for the coverpoint shall be of the specified data type and shall be determined as though
the coverpoint expression were assigned to a variable of the specified type.

If no data type is specified, the inferred type for the coverpoint shall be the self-determined type of
the coverpoint expression.

The expression within the iff construct specifies an optional condition that disables coverage sam-
pling for that coverpoint. If the iff expression evaluates to false at a sampling point, the coverage
point is not sampled.

A coverage point bin associates a name and a count with a set of values. The count is incremented
every time the coverage point matches one of the values in the set. The bins for a coverage point can
automatically be created by the PSS processing tool or explicitly defined using the bins construct to
name each bin. If the bins are not explicitly defined, they are automatically created by the PSS pro-
cessing tool. The number of automatically created bins can be controlled using the auto_bin -
max coverage option. Coverage options are described in Table 20.

The default specification defines a bin that is associated with none of the defined value bins. The
default bin catches the values of the coverage point that do not lie within any of the defined bins.
However, the coverage calculation for a coverage point shall not take into account the coverage cap-
tured by the default bin. The default bin is also excluded from cross coverage. The default is useful
for catching unplanned or invalid values. A default bin specification cannot be explicitly ignored. It
shall be an error for bins designated as ignore_bins to also specify default.

19.3.2 C++ syntax

The corresponding C++ syntax for Syntax 114 is shown in Syntax 115, Syntax 116, and Syntax 117.

pss::coverpoint
Defined in pss/covergroup_coverpoint.h (see C.16).
class coverpoint;

Class for declaring a coverpoint.

Member functions

template <class... T> coverpoint (const std::string &name,

const detail::AlgebExpr &target,

const T&... /* bins|ignore bins|illegal bins */ bin_items) :constructor
template <class... T> coverpoint (const std::string &name,

const detail::AlgebExpr &target, const iff &cp iff,

const T&... /* bins|ignore bins|illegal bins */ bin items) : constructor
template <class... T> coverpoint (const std::string &name,

const detail::AlgebExpr &target, const options &cp options,

const T&... /* bins|ignore bins|illegal bins */ bin_items) :constructor
template <class... T> coverpoint (const std::string &name,

const detail::AlgebExpr &target, const iff &cp iff,
const options &cp options,
const T&... /* bins|ignore bins|illegal bins */ bin items) : constructor

Syntax 115—C++: coverpoint declaration

Copyright © 2021 Accellera. All rights reserved.
290

Portable Test and Stimulus Standard 2.0 — April 2021

pss::coverpoint

Defined in pss/covergroup_coverpoint.h (see C.16).
class coverpoint;

Class for declaring a coverpoint.

Constructors for unnamed coverpoints.

Member functions

template <class... T> coverpoint (const detail::AlgebExpr &target,

const T&... /* bins|ignore bins|illegal bins */ bin_ items) : constructor
template <class... T> coverpoint (const detail::AlgebExpr &target,

const iff &cp iff,

const T&... /* bins|ignore bins|illegal bins */ bin items) :constructor
template <class... T> coverpoint (const detail::AlgebExpr &target,

const options &cp options,

const T&... /* bins|ignore bins|illegal bins */ bin items) : constructor
template <class... T> coverpoint (const detail::AlgebExpr &target,

const iff &cp iff, const options &cp options,

const T&... /* bins|ignore bins|illegal bins */ bin items) :constructor

Syntax 116—C++: constructors for unnamed coverpoint declaration

pss::iff

Defined in pss/covergroup_ iff.h (see C.18).
class iff;

Class for specifying an iff condition on a coverpoint.

Member functions

iff (const detail::AlgebExpr &expr) :constructor

Syntax 117—C++: Specifying an iff condition on a coverpoint

19.3.3 Examples

In Example 239 and Example 240, coverage point s0 is covered only if is_sO_enabled is true.

Copyright © 2021 Accellera. All rights reserved.
291

Portable Test and Stimulus Standard 2.0 — April 2021

struct s {
rand bit[4] sO;
rand bool is s0 enabled;

covergroup {
coverpoint sO iff (is s0 enabled);
} cs4;

Example 239—DSL: Specifying an iff condition

class s : public structure {...
rand attr<bit> s0 {"sO0", width(4)};
rand attr<bool> is s0 enabled {"is sO enabled"};

covergroup inst<> csd4 { "cs4", [&] () {
coverpoint sO {s0, iff(is_sO0 enabled) };
}

i

Example 240—C++: Specifying an iff condition

19.3.4 Specifying bins

The bins construct creates a separate bin for each value in the given range list or a single bin for the entire
range of values. The syntax for defining bins is shown in Syntax 118, Syntax 119 and Syntax 120.

19.3.4.1 DSL syntax

The syntax for bins is shown in Syntax 118.

covergroup_coverpoint_binspec ::= bins_keyword identifier
[[[constant_expression] |] = coverpoint_bins
coverpoint_bins ::=
| covergroup range list | [with (covergroup expression) | ;
| coverpoint identifier with (covergroup expression) ;
| default ;
covergroup_range list ::= covergroup value range {, covergroup value range }
covergroup_value range ::=
expression
| expression .. [expression]
| [expression] .. expression

bins_keyword ::= bins | illegal bins | ignore bins

covergroup_expression ::= expression
Syntax 118—DSL: bins declaration

Copyright © 2021 Accellera. All rights reserved.
292

Portable Test and Stimulus Standard 2.0 — April 2021

The following also apply:

a)

b)

¢)

To create a separate bin for each value (an array of bins), add square brackets ([|) after the bin
name.

1) To create a fixed number of bins for a set of values, a single positive integral expression can be
specified inside the square brackets.

2) The bin name and optional square brackets are followed by a covergroup range_list that spec-
ifies the set of values associated with the bin.

3) It shall be legal to use the range value form expression.. and ..expression to denote a range that
extends to the upper or lower value (respectively) of the coverpoint data type.

If a fixed number of bins is specified and that number is smaller than the specified number of values,
the possible bin values are uniformly distributed among the specified bins.

1) The first N specified values (where N = int(number of values / number of bins)) are assigned to
the first bin, the next N specified values are assigned to the next bin, etc.

2) Duplicate values are retained; thus, the same value can be assigned to multiple bins.

3) If the number of values is not evenly divisible by the number of bins, then the last bin will
include the remaining items, e.g., for
bins fixed [4] = [1..10, 1, 4, 71;
The 13 possible values are distributed as follows: <1,2,3>, <4,5,6>, <7,8,9>,
<10,1,4,7>.

A covergroup _expression is an expression. In the case of a with covergroup expression, the expres-
sion can involve constant terms and the coverpoint variable (see 19.3.5).

19.3.4.2 C++ syntax

The corresponding C++ syntax for Syntax 118 is shown in Syntax 119 and Syntax 120. Classes with the
same C++ API are also defined for illegal _bins and ignore_bins. See also C.15.

pss::bins

Defined in pss/covergroup_bins.h (see C.15).

Class for capturing coverpoint bins with template parameter of bit or int.

Member functions

template <class T> class bins;

bins (const std::string &name) : constructor for default bins

bins (const std::string &name, const range &ranges) :constructor for specified ranges

bins (const std::string &name, const coverpoint &cp) :constructor for coverpoint-bounded
bins

const bins<T> &with (const detail::AlgebExpr &expr) :apply with expression

Syntax 119—C++: coverpoint bins with template parameter of bit or int

Copyright © 2021 Accellera. All rights reserved.
293

Portable Test and Stimulus Standard 2.0 — April 2021

pss::bins
Defined in pss/covergroup bins.h (see C.15).
template <class T> class bins;
Class for capturing coverpoint bins with template parameter of vec<bit> or vec<int>.
Member functions

bins (const std::string &name) : constructor for default bins

bins (const std::string &name, uint32 t size) : constructor for specified count default bins

bins(const std::string &name, uint32 t size, const range &ranges) :constructor
for specified count bins

bins (const std::string &name, uint32 t size, const coverpoint &cp) :constructor
for specified count on coverpoint

bins (const std::string &name, const range &ranges) :constructor for unbounded count
ranges

bins (const std::string &name, const coverpoint &cp) :constructor for unbounded count
on coverpoint

const bins<T> &with (const detail::AlgebExpr &expr) :apply with expression

Syntax 120—C++: coverpoint bins with template parameter of vec<bit> or vec<int>

19.3.4.3 Examples

In Example 241 and Example 242, the first bins construct associates bin a with the values of v_a, between
0 and 63 and the value 65. The second bins construct creates a set of 65 bins b[127], b[128], ...
b[191]. Likewise, the third bins construct creates 3 bins: c[200], c[201], and c[202]. The fourth
bins construct associates bin d with the values between 1000 and 1023 (the trailing . . represents the
maximum value of v_a). Every value that does not match bins a, b[], c[], or d is added into its own
distinct bin.

struct s {
rand bit[10] v_a;

covergroup {
coverpoint v_a {
bins a [0..63, 65];
bins b[] = [127..150, 148..191];
bins c[] = [200, 201, 202];
bins d = [1000..1;
bins others[] = default;

} cs;

Example 241—DSL: Specifying bins

Copyright © 2021 Accellera. All rights reserved.
294

Portable Test and Stimulus Standard 2.0 — April 2021

class s : public structure {
rand attr<bit> v_a {"v_a", width(10)};

covergroup inst<> cs { "cs", [&] () |
coverpoint v a { v_a,
bins<bit> {"a", range(0,63) (65)},

bins<vec<bit>> {"c", range (200) (201) (202)},
bins<bit> {"d", range (1000, upper)},
bins<vec<bit>> {"others"}

(

bins<vec<bit>> {"b", range(127,150) (148,191)},
(
(

Example 242—C++: Specifying bins

19.3.5 Coverpoint bin with covergroup expressions

The with clause specifies that only those values in the covergroup range list (see Syntax 118) that satisfy
the given expression (i.e., for which the expression evaluates to frue) are included in the bin. In the
expression, the name of the coverpoint shall be used to represent the candidate value. The candidate value is
of the same type as the coverpoint.

The with clause behaves as if the expression were evaluated for every value in the covergroup range_list at
the time the covergroup instance is created. The with covergroup expression is applied to the set of values
in the covergroup range_list prior to distribution of values to the bins. The result of applying a with
covergroup_expression shall preserve multiple, equivalent bin items as well as the bin order. The intent of
these rules is to allow the use of non-simulation analysis techniques to calculate the bin (e.g., formal
symbolic analysis) or for caching of previously calculated results.

Consider Example 243 and Example 244, where the bin definition selects all values from 0 to 255 that are
evenly divisible by 3.

struct s {
rand bit[8] x;

covergroup {
a: coverpoint x {

bins mod3[] = [0..255] with ((a % 3) == 0);

} cs;

Example 243—DSL: Select constrained values between 0 and 255

Copyright © 2021 Accellera. All rights reserved.
295

Portable Test and Stimulus Standard 2.0 — April 2021

class s : public structure {
rand attr<bit> x {"x", width(8)};

covergroup inst<> cs { "cs", [&] () |
coverpoint a { "a", x,
bins<vec<bit>> {"mod3", range (0,255)}.with ((a % 3) == 0)

Example 244—C++: Select constrained values between 0 and 255

The name of the coverpoint itself may be used in place of the covergroup range_list, preceding the with
keyword, to denote all values of the coverpoint. Only the name of the coverpoint containing the bin being
defined shall be allowed.

In Example 245 and Example 246, coverpoint name a is used in place of the covergroup range_list to
denote that the with covergroup expression will be applied to all values of the coverpoint.

struct s {
rand bit[8] x;

covergroup {
a: coverpoint x {
bins mod3[] = a with ((a

oe
w
Il
Il
~

} cs;

Example 245—DSL: Using with in a coverpoint

class s : public structure {...
rand attr<bit> x {"x", width(8)};

covergroup inst<> cs { "cs", [&] () {
coverpoint a { "a", x,
bins<vec<bit>> {"mod3", a}.with((a % 3) == 0)

Example 246—C++: Using with in a coverpoint

Copyright © 2021 Accellera. All rights reserved.
296

Portable Test and Stimulus Standard 2.0 — April 2021

19.3.6 Automatic bin creation for coverage points

If a coverage point does not define any bins, PSS automatically creates bins. This provides an easy-to-use
mechanism for binning different values of a coverage point. Users can either let the tool automatically create
bins for coverage points or explicitly define named bins for each coverage point.

When the automatic bin creation mechanism is used, PSS creates N bins to collect the sampled values of a
coverage point. The value N is determined as follows:

— For an enum coverage point, N is the cardinality of the enumeration.

— For a numeric coverage point, N is the minimum of 2M and the value of the auto_bin_max option
(see Table 20), where M is the number of bits needed to represent the coverage point.

If the number of automatic bins is smaller than the number of possible values (N < ZM), the 2M values are
uniformly distributed in the N bins. If the number of values, 2M s not divisible by N, then the last bin will
include the additional remaining items. For example, if M is 3 and N is 3, the eight possible values are
distributed as follows: <0..1>, <2..3>,<4..7>.

PSS implementations can impose a limit on the number of automatic bins. See Table 20 for the default value
ofauto_bin max.

Each automatically created bin will have a name of the form auto[value], where value is either a
single coverage point value or the range of coverage point values included in the bin (in the form
low. .high). For enumeration types, value is the named constant (enum item) associated with the
particular enumeration value.

19.3.7 Excluding coverage point values

A set of values associated with a coverage point can be explicitly excluded from coverage by specifying
them as ignore_bins. See Example 247 and Example 248.

All values associated with ignored bins are excluded from coverage. Each ignored value is removed from
the set of values associated with any coverage bin. The removal of ignored values shall occur after
distribution of values to the specified bins.

Examples

Example 247 and Example 248 may result in a bin that is associated with no values or sequences. Such
empty bins are excluded from coverage.

struct s {
rand bit[4] a;

covergroup {
coverpoint a {
ignore bins ignore vals = [7, 8];
}
} cs23;

Example 247—DSL: Excluding coverage point values

Copyright © 2021 Accellera. All rights reserved.
297

Portable Test and Stimulus Standard 2.0 — April 2021

class s : public structure {...
rand attr<bit> a {"a", width(4)};

covergroup inst<> cs23 { "cs23", [&] () |
coverpoint a cp { a,
ignore bins<bit> {"ignore vals", range(7) (8)}

b

Example 248—C++: Excluding coverage point values

19.3.8 Specifying illegal coverage point values

A set of values associated with a coverage point can be marked as illegal by specifying them as illegal_bins.

See Example 249 and Example 250.

All values associated with illegal bins are excluded from coverage. Each illegal value is removed from the
set of values associated with any coverage bin. The removal of illegal values shall occur after the
distribution of values to the specified bins. If an illegal value occurs, a runtime error shall be issued. Illegal
bins take precedence over any other bins, i.e., they result in a runtime error even if they are also included in

another bin.

Examples

Example 249 and Example 250 may result in a bin that is associated with no values or sequences. Such

empty bins are excluded from coverage.

struct s {
rand bit[4] a;

covergroup {
coverpoint a {
illegal bins illegal vals = [7, 8];
}
} cs23;

Example 249—DSL: Specifying illegal coverage point values

Copyright © 2021 Accellera. All rights reserved.
298

Portable Test and Stimulus Standard 2.0 — April 2021

class s : public structure {...
rand attr<bit> a {"a", width(4)};

covergroup inst<> cs23 { "cs23", [&] () |
coverpoint a cp { a,
illegal bins<bit> {"illegal vals", range(7) (8)}
}i

Example 250—C++: Specifying illegal coverage point values

19.3.9 Value resolution

A coverpoint expression, the expressions in a bins construct, and the coverpoint type, if present, are all
involved in comparison operations in order to determine into which bins a particular value falls. Let e be the
coverpoint expression and b be an expression in a bins covergroup range list. The following rules shall
apply when evaluating e and b:

a)

b)

If there is no coverpoint type, the effective type of e shall be self-determined. In the presence of a
coverpoint type, the effective type of e shall be the coverpoint type.

b shall be statically cast to the effective type of e. An implementation shall issue a warning under the
following conditions:

1) If the effective type of e is unsigned and b is signed with a negative value.

2) If assigning b to a variable of the effective type of e would yield a value that is not equal to b
under normal comparison rules for ==.

If a warning is issued for a bins element, the following rules shall apply:

¢) Ifan element of a bins covergroup range list is a singleton value b, that element shall not appear in
the bins values.

d) If an element of a bins covergroup range list is arange b1 . .b2 and there exists at least one value
in the range for which a warning would not be issued, the range shall be treated as containing the
intersection of the values in the range and the values expressible by the effective type of e.

Examples

Example 251 leads to the following:

For b1, a warning is issued for the range 6. .10. b1 is treated as though it had the specification
[1, 2..5, 6..7].

For b2, a warning is issued for the range 1. .10 and for the values -1 and 15. b2 is treated as
though it had the specification [1. . 7].

For b3, a warning is issued for the ranges 2. . 5 and 6. . 10. b3 is treated as though it had the spec-
ification [1, 2..3].

For b4, a warning is issued for the range 1. . 10 and for the value 15. b4 is treated as though it had
the specification [-1, 1..3].

Copyright © 2021 Accellera. All rights reserved.
299

Portable Test and Stimulus Standard 2.0 — April 2021

struct s {
rand bit[3] pl; // type expresses values in the range 0 to 7
int [3] P2; // type expresses values in the range -4 to 3

covergroup {
coverpoint pl {
bins bl = [1, 2..5, 6..10]; // warning issued for range 6..10

bins b2 = [-1, 1..10, 15]; // warning issued for range 1..10

} // and values -1 and 15
coverpoint p2 {

bins b3 = [1, 2..5, 6..10]1; // warning issued for ranges 2..5

// and 6..10

bins b4 = [-1, 1..10, 15]; // warning issued for range 1..10

} // and value 15

} cl;

Example 251—DSL: Value resolution

19.4 Defining cross coverage

A covergroup can specify cross coverage between two or more coverage points or variables. Cross
coverage is specified using the cross construct (see Syntax 121 and Syntax 122). When a variable V is part
of a cross coverage, the PSS processing tool implicitly creates a coverage point for the variable, as if it had
been created by the statement coverpoint V;. Thus, a cross involves only coverage points. Expressions
cannot be used directly in a cross; a coverage point must be explicitly defined first.

19.4.1 DSL syntax

Syntax 121 declares a cross.

covergroup_cross ::= covercross_identifier : cross
coverpoint identifier {, coverpoint identifier }
[iff (expression)] cross_item or null
covercross_identifier ::= identifier
cross_item_or null ::=
{ { covergroup_cross_body item } }
|5
covergroup_cross_body item ::=
covergroup_option
| covergroup cross_binspec
covergroup_cross_binspec ::=
bins_keyword identifier = covercross_identifier with (covergroup expression) ;
covergroup_expression ::= expression
Syntax 121—DSL: cross declaration

Copyright © 2021 Accellera. All rights reserved.
300

Portable Test and Stimulus Standard 2.0 — April 2021

The following also apply:

a) The label is required for a cross. The expression within the optional iff provides a conditional sam-
pling guard for the cross coverage. If the condition evaluates to false at any sampling point, the cross
coverage is not sampled.

b) Cross coverage of a set of N coverage points is defined as the coverage of all combinations of all

bins associated with the N coverage points, i.e., the Cartesian product of the N sets of coverage point
bins. See also Example 252 and Example 253.

19.4.2 C++ syntax

The corresponding C++ syntax for Syntax 121 is shown in Syntax 122.

PSS:iCross
Defined in pss/covergroup_cross.h (see C.17).
class cross;

Class for capturing a coverpoint cross. In all variadic-template constructors, fields of coverpoint, attr,
rand_attr, bins, ignore_bins, and illegal bins may be specified.

Member functions

template <class... T> cross(const std::string &name, const T&... items)
constructor

template <class... T> cross(const std::string &name, const iff &cp iff,
const T&... items) :constructor

template <class... T> cross(const std::string &name,
const options &cp options, const T&... items) :constructor

template <class... T> cross(const std::string &name, const iff &cp iff,
const options &cp options, const Té&... items) :constructor

Syntax 122—C++: cross declaration

19.4.3 Examples

The covergroup cov in Example 252 and Example 253 specifies the cross coverage of two 4-bit variables, a
and b. The PSS processing tool implicitly creates a coverage point for each variable. Each coverage point
has 16 bins, specifically auto[0]..auto[15]. The cross of a and b (labeled aXb), therefore, has 256
cross products and each cross product is a bin of aXb.

struct s {
rand bit[4] a, b;

covergroup {
aXb : cross a, b;
} cov;

Example 252—DSL: Specifying a cross

Copyright © 2021 Accellera. All rights reserved.
301

Portable Test and Stimulus Standard 2.0 — April 2021

class s : public structure {...
rand attr<bit> a {"a", width(4)};
rand attr<bit> b {"b", width(4)}

’

covergroup inst<> cov { "cov", [&]() {
cross aXb { "aXb", a, b};

}

b

Example 253—C++: Specifying a cross

19.5 Defining cross bins

In addition to specifying the coverage points that are crossed, PSS allows the definition of cross coverage
bins. Cross coverage bins are specified to group together a set of cross products. A cross coverage bin
associates a name and a count with a set of cross products. The count of the bin is incremented any time any
of the cross products match; i.e., every coverage point in the cross matches its corresponding bin in the cross
product.

User-defined bins for cross coverage are defined using bins with expressions. The names of the coverpoints
used as elements of the cross coverage are used in the with expressions. User-defined cross bins and
automatically generated bins can coexist in the same cross. Automatically generated bins are retained for
those cross products that do not intersect cross products specified by any user-defined cross bin.

Examples
Consider Example 254 and Example 255, where two coverpoints are declared on fields a and b. A cross

coverage is specified between these two coverpoints. The small a b bin collects those bins where both a
and b <= 10.

struct s {
rand bit[8] a, b;

covergroup {
coverpoint a {
bins low([] = [0..127];
bins high = [128..255];
}
coverpoint b {
bins two[] = b with (b%2 == 0);
}

X : cross a, b {
bins small a b = X with (a<=10 && b<=10);
t

} cov;

Example 254—DSL: Specifying cross bins

Copyright © 2021 Accellera. All rights reserved.
302

Portable Test and Stimulus Standard 2.0 — April 2021

b

i

}s

b

coverpoint cp b {
bins<vec<bit>> {"two", b}.with((b%2) == 0)

class s : public structure {...
rand attr<bit> a {"a", width(8)};
rand attr<bit> b {"b", width(8)}

covergroup inst<> cov { "cov", [&]() {
coverpoint cp _a {
bins<vec<bit>> {"low", range(0,127)},
bins<bit> {"high",

cross X { "X", cp_a,
bins<bit>{"small a b", X}.with(a<=10 && b<=10)

won
a’y

"b", b,

’

ay

range (128,255) }

cp_b,

Example 255—C++: Specifying cross bins

19.6 Specifying coverage options

Options control the behavior of the covergroup, coverpoint, and cross elements. There are two types of
options: those that are specific to an instance of a covergroup and those that specify an option for the
covergroup type as a whole. Instance-specific options can be specified when creating an instance of a
reusable covergroup. Both type and instance-specific options can be specified when defining an in-line

covergroup instance.

Specifying a value for the same option more than once within the same covergroup definition shall be an
error. Specifying a value for the option more than once when creating a covergroup instance shall be an

€1ror.

Table 20 lists the instance-specific covergroup options and their description. Each instance of a reusable

covergroup type can initialize an instance-specific option to a different value.

Table 20—Instance-specific covergroup options

Option name

Default

Description

weight=number

If set at the covergroup syntactic level, it specifies the
weight of this covergroup instance for computing the over-
all instance coverage. If set at the coverpoint (or cross) syn-
tactic level, it specifies the weight of a coverpoint (or cross)
for computing the instance coverage of the enclosing cover-
group. The specified weight shall be a non-negative integral
value.

goal=number

100

Specifies the target goal for a covergroup instance or for a
coverpoint or cross. The specified value shall be a non-neg-
ative integral value.

Copyright © 2021 Accellera. All rights reserved.

303

Portable Test and Stimulus Standard 2.0 — April 2021

Table 20—Instance-specific covergroup options (Continued)

Option name Default Description
name=string unique name | Specifies a name for the covergroup instance. If unspeci-
fied, a unique name for each instance is automatically gener-
ated by the tool.

"

comment=string A comment that appears with the covergroup instance or
with a coverpoint or cross of a covergroup instance. The
comment is saved in the coverage database and included in

the coverage report.

at_least=number 1 Minimum number of hits for each bin. A bit with a hit count
that is less than number is not considered covered. The spec-
ified value shall be a non-negative integral value.

detect_overlap=bool false When true, a warning is issued if there is an overlap between
the range list of two bins of a coverpoint.

auto_bin_max=number 64 Maximum number of automatically created bins when no
bins are explicitly defined for a coverpoint. The specified
value shall be a positive integral value.

per_instance=bool false Each instance contributes to the overall coverage informa-
tion for the covergroup type. When true, coverage informa-
tion for this covergroup instance shall be saved in the
coverage database and included in the coverage report.

When false, implementations are not required to save
instance-specific information.

Instance options can only be specified at the covergroup level. Except for the weight, goal, comment,
and per_instance options (see Table 20), all other options set at the covergroup syntactic level act as a
default value for the corresponding option of all coverpoints and crosses in the covergroup. Individual
coverpoints and crosses can overwrite these defaults. When set at the covergroup level, the weight,
goal, comment, and per_instance options do not act as default values to the lower syntactic levels.

The identifier type_option is used to specify type options when declaring a covergroup:
type option.member name = constant expression ;
19.6.1 C++ syntax

Syntax 123, Syntax 124, Syntax 125, Syntax 126, Syntax 127, Syntax 128, Syntax 129, Syntax 130, and
Syntax 131 show how to define the C++ options and option values.

Copyright © 2021 Accellera. All rights reserved.
304

Portable Test and Stimulus Standard 2.0 — April 2021

pss::options

Defined in pss/covergroup_options.h (see C.20).
class options;

Class for capturing coverpoint, cross, and covergroup options.

Member functions

template <class... O> options(const O&... /*
weight
| goal
| name
| comment
| detect overlap
| at least
| auto bin max
| per _instance */ options) :constructor

Syntax 123—C++: options declaration

pss::weight

Defined in pss/covergroup_options.h (see C.20).
class weight;

Class for capturing the weight coverage option.

Member functions

weight (uint32 t w) :constructor

Syntax 124—C++: weight option

pss::goal

Defined in pss/covergroup_options.h (see C.20).
class goal;

Class for capturing the goal coverage option.

Member functions

goal (uint32 t w) :constructor

Syntax 125—C++: goal option

Copyright © 2021 Accellera. All rights reserved.
305

Portable Test and Stimulus Standard 2.0 — April 2021

pss::name
Defined in pss/covergroup_options.h (see C.20).
class name;

Class for capturing the name coverage option.

Member functions
name (const std::string &name) : constructor
Syntax 126—C++: name option
pss::comment

Defined in pss/covergroup_options.h (see C.20).
class comment;

Class for capturing the comment coverage option.

Member functions

comment (const std::string &c) :constructor

Syntax 127—C++: comment option

pss::detect_overlap

Defined in pss/covergroup_options.h (see C.20).
class detect overlap;

Class for capturing the detect_overlap coverage option.

Member functions

detect overlap(bool detect) : constructor

Syntax 128—C++: detect_overlap option

Copyright © 2021 Accellera. All rights reserved.
306

Portable Test and Stimulus Standard 2.0 — April 2021

pss::at_least

Defined in pss/covergroup_options.h (see C.20).
class at least;

Class for capturing the at_least coverage option.

Member functions

at least (uint32 t 1) :constructor

Syntax 129—C++: at_least option

pss::auto_bin_max

Defined in pss/covergroup_options.h (see C.20).
class auto bin max;

Class for capturing the auto_bin_max coverage option.

Member functions

auto bin max(uint32 t 1) :constructor

Syntax 130—C++: auto_bin_max option

pss::per_instance

Defined in pss/covergroup_options.h (see C.20).
class per instance;

Class for capturing the per_instance coverage option.

Member functions

per instance (bool v) :constructor

Syntax 131—C++: per_instance option

Copyright © 2021 Accellera. All rights reserved.
307

Portable Test and Stimulus Standard 2.0 — April 2021

19.6.2 Examples

The instance-specific options mentioned in Table 20 can be set in the covergroup definition. Example 256
and Example 257 show this, and how coverage options can be set on a specific coverpoint.

covergroup csl (bit[64] a var, bit[64] b var) {
option.per instance = true;
option.comment = "This is CS1";
a : coverpoint a var {
option.auto bin max = 128;
}
b : coverpoint b var {
option.weight = 10;
}
t

Example 256—DSL: Setting options

class csl : public covergroup {...
attr<bit> a var {"a var", width(64)
attr<bit> b var {"b_var", width(64)

}i
}i
options opts {

per instance (true),

comment ("This is CS1")

b

coverpoint a { "a", a var,
options {
auto bin max (64)

b
coverpoint b { "b", b var,
options {

weight (10)

}i
b

Example 257—C++: Setting options

Copyright © 2021 Accellera. All rights reserved.
308

Portable Test and Stimulus Standard 2.0 — April 2021

19.7 covergroup sampling

Coverage credit can be taken once execution of the action containing covergroup instance(s) is complete.
Thus, by default, all covergroup instances that are created as a result of a given action’s traversal are
sampled when that action’s execution completes. Table 21 summarizes when covergroups are sampled,
based on the context in which they are instantiated.

Table 21—covergroup sampling

Instantiation context Sampling point
Flow objects Sampled when the outputting action completes traversal.
Resource objects Sampled before the first action referencing them begins traversal.
Action Sampled when the instantiating action completes traversal.
Data structures Sampled along with the context in which the data structure is instantiated, e.g., if a
data structure is instantiated in an action, the covergroup instantiated in the data
structure is sampled when the action completes traversal.

19.8 Per-type and per-instance coverage collection

By default, covergroups collect coverage on a per-fype basis. This means that all coverage values sampled
by instances of a given covergroup type, where per instance is false, are merged into a single
collection.

Per-instance coverage is collected when per instance is frue for a given covergroup instance and
when a contiguous path of named handles exists from the root component or root action to where new
instances of the containing type are created. If one of these conditions is not satisfied, per-type coverage is
collected for the covergroup instance.

Copyright © 2021 Accellera. All rights reserved.
309

Portable Test and Stimulus Standard 2.0 — April 2021

19.8.1 Per-instance coverage of flow and resource objects

Per-instance coverage of flow objects (buffer (see 14.1), stream (see 14.2), state (see 14.3)) and resource

objects (see 15.1)) is collected for each pool of that type.

In Example 258, there is one pool (pss_top.bl p) of buffer type bl. When the PSS model runs,
coverage from all 10 executions of P_a and C_ a is placed in the same coverage collection that is associated

with the pool through which P_a and C_ a exchange the buffer object b1.

enum mode e { MO, M1, M2 }

buffer bl {
rand mode e mode;

covergroup {
option.per instance = true;

coverpoint mode;
} cs;

}

component pss_top {
pool bl bl p;
bind bl p *;

action P a {
output bl bl out;
}

action C a {
input bl bl in;
}

action entry {

activity {
repeat (10) {
do C a;

}

Example 258—DSL: Per-instance coverage of flow objects

Copyright © 2021 Accellera. All rights reserved.
310

Portable Test and Stimulus Standard 2.0 — April 2021

19.8.2 Per-instance coverage in actions

Per-instance coverage for actions is enabled when per _instance is true for a covergroup instance and
when a contiguous path of named handles exists from the root action to the location where the covergroup
is instantiated.

In Example 259, a contiguous path of named handles exists from the root action to the covergroup instance
inside al (entry.al.cg). Coverage data collected during traversals of action A are placed in a coverage
collection unique to this named path. Plus, four samples are placed in the coverage collection associated
with the instance path entry.al . cg because the named action handle a1l is traversed four times.

Also in Example 259, a contiguous path of named handles does not exist from the root action to the
covergroup instance inside the action traversal by type (do A). In this case, coverage data collected during
the 10 traversals of action A by type (do A) are placed in the per-type coverage collection associated with
covergroup type A: : Cg.

enum mode e { MO, M1, M2 }
component pss top {

action A {
rand mode e mode;

covergroup {
option.per instance = true;

coverpoint mode;
}ocgs

action entry {

A al;
activity {

repeat (4) {
al;

}

repeat (10) {
do A;

}

Example 259—DSL: Per-instance coverage in actions

Copyright © 2021 Accellera. All rights reserved.
311

Portable Test and Stimulus Standard 2.0 — April 2021

20. Type inheritance, extension, and overrides

PSS supports the concepts of object-oriented inheritance and type extension to maximize reuse and
portability of the model. Type inheritance allows the declaration of model entities such as actions, objects,
components and struct types to be derived from a base type (or super-type), where the new derived type (or
subtype) includes all attributes and other members of the base type, and allows the declaration of the derived
type to add new members or mask the definition of existing members. Type extension allows the declaration
of additional fields in an existing type using a separate declaration. Type inheritance is described in 20.1,
and type extension is described in 20.2. Type overrides allow type-specific and instance-specific
replacement of the declared type of a field with a specified subtype, and are described in 20.5.

20.1 Type inheritance

For actions, components, structs, data flow and resource objects, the declaration may include an optional
super-spec qualifier to declare a base type of the same type category (action, component, struct, buffer,
stream, state, resource), from which the element is to be derived. The only exception is that data flow and
resource objects may inherit from an element of the same type category or from a struct.

A derived type includes all elements from the base type, and may declare new elements that may or may not
have the same name as a corresponding element in the base type. For fields declared in a derived type with
the same name as a field in the base type, the derived type’s field shadows (masks) the base type’s field, and
the base type’s field may be referenced as “super . <name>". Certain unnamed elements, such as activities
and procedural exec blocks, may invoke the corresponding element(s) from the base type by the “super;”
statement.

The behavior of specific elements when declared in a derived type is shown in Table 22.

Table 22—Derived type element behaviors

In a struct, data flow or

Element kind In a component In an action .
resource object

activity n/a shadow, may call super; n/a

dynamic constraint n/a shadow (may access base shadow (may access base
constraint as super.name) | constraint as super.name)

named static n/a shadow shadow

constraint

unnamed static n/a added added

constraint

field shadow (may access base shadow (may access base shadow (may access base

field as super.name) field as super.name) field as super.name)
function shadow (may call base func- n/a n/a
tion as super.name(args))
override declaration added added n/a
object pool bind added n/a n/a

procedural exec block

shadow, may call super;

shadow, may call super;

shadow, may call super;

target-template exec
block

n/a

shadow

shadow

Copyright © 2021 Accellera. All rights reserved.

312

Portable Test and Stimulus Standard 2.0 — April 2021

Activities in derived actions shadow the activities from the base action type. However, the “super;”
statement may be used to traverse the base activity (or activities). See Example 117 in 13.6.

Procedural exec blocks defined in a derived type shadow same-kind exec block(s) defined in the base type.
The exec block in the derived type may include the “super ;” statement, which will execute the contents of
the corresponding base-type exec block(s) at that point. See 22.1.5.1 and 22.1.5.2.

Target-template exec blocks defined in a derived type shadow same-kind exec blocks with the same target
language identifier in the base type. The “super ;” statement shall not be allowed in a target-template exec
block.

Example 260 and Example 261 show a simple case of declaring a component base c, which contains an
action declaration, base a. Derived component der c inherits from base_c, so it is treated as having
action base_a already declared within it. Note that base c and der c are different component types.
Action der_a inherits from base_a, so it already includes random integer i and bit-vector b, as well as
the unnamed constraint limiting i to be less than 10 and constraint ¢ forcing b > 7. Derived action
der a adds an additional random integer, j, a new unnamed constraint that relates the values of 1 and 7,
and a new constraint c that relates the values of b and j, shadowing constraint ¢ from action base _a.

component base c {
action base a {
rand int 1i;
rand bit[31:0] b;
constraint {i < 10;}
constraint c {b > 7;}

}

component der ¢ : base c {
action der a : base a {
rand int j;
constraint {j > 5 -> i < 5;}
constraint ¢ {j < 10 -> b < 128;}

Example 260—DSL: Declaring derived components and actions

The corresponding C++ example for Example 260 is shown in Example 261.

Copyright © 2021 Accellera. All rights reserved.
313

Portable Test and Stimulus Standard 2.0 — April 2021

class base c : public component ({
class base a : public action {
rand attr<int> i {"i"};
rand attr<bit> b {"b", width(31,0)};
constraint cO0 {"cO", i < 10};
constraint ¢ {"c¢" , b > 7 };

class der c : base c {
class der a : base c::base a {
rand attr<int> j {"j"};
constraint cl {"cl", if then{cond(j > 5) , 1 < 5 }};
constraint ¢ {"c¢" , if then{cond(j < 10), b < 128}};

Example 261—C++: Declaring derived components and actions

When a pool bind statement (see 16.4) is used in a base component type, it may also apply to a derived type,
provided that any new component instances and actions in the derived type also match the path specification
in the bind statement and that the types of the object references match the pool type exactly.

In Example 262 and Example 263, the default bind statement in base c binds the cpu_p pool to the
actions actl a and act2_a defined therein. Since der c is derived from base c, it also inherits the
bind statement, which applies to all action definitions in der c that match the path specification. In the
context of der c, the default bind statement binds all three actions act1l a, act2 aand act3_a tothe
cpu_p pool.

resource cpu core s {...

}

component base c {
pool[4] cpu core s cpu p;
bind cpu p *;
action actl a {
share cpu core s cpu share;
}
action act2 a {
lock cpu core s cpu_lock;

}

component der c : base c {
action act3 a {
share cpu core s cpu_ share;

}

Example 262—DSL: Default pool with inheritance

Copyright © 2021 Accellera. All rights reserved.
314

Portable Test and Stimulus Standard 2.0 — April 2021

The corresponding C++ example for Example 262 is shown in Example 263.

struct cpu core s : public resource {...};

class base c : public component ({
pool<cpu core s> cpu p{"cpu p", 4};
bind b {cpu p};
class actl a : public action {...
share <cpu core s> cpu share{"cpu share"};
}i
class act2 a : public action {...
lock <cpu core s> cpu lock{"cpu lock"};
}7

class der c : base c {
class act3 a : public action {...
share <cpu core s> cpu share{"cpu share"};
i

Example 263—C++: Default pool with inheritance

As mentioned above, a derived type inherits all members from the base type and may declare additional
elements specific to the derived type. When a named element (other than a function) is declared in the
derived type with the same name as an element in the base type, the derived type’s declaration shadows
(masks) the base type’s declaration (as with constraint ¢ in Example 260 and Example 261).

When the shadowed element is a function, the function call is polymorphic, that is, the actual function called
depends on its context component. In Example 264 and Example 265, component der c shadows the
definition of function foo () in component base c. Action call foo invokes the appropriate definition
of foo () depending on the type of its context component. Action test schedules call foo in the
context of a component of type base c, followed by call foo in the context of der c. Assuming that
target function print () prints out a line, executing test will print the following:

base c::foo
der c::foo

Copyright © 2021 Accellera. All rights reserved.
315

Portable Test and Stimulus Standard 2.0 — April 2021

component base c {
function void foo () {
print ("base c::foo");

action call foo {
exec body {
comp.foo () ;

component der ¢ : base c {
function void foo() {
print ("der c::foo");

}r

component pss_top {
base c b;
der c d;
action test {
base c::call foo b foo, d foo;

constraint {b foo.comp == this.comp.b;
d foo.comp == this.comp.d;}
activity {
b foo;
d foo;

Example 264—DSL: Polymorphic function calls

Copyright © 2021 Accellera. All rights reserved.
316

Portable Test and Stimulus Standard 2.0 — April 2021

The corresponding C++ example for Example 264 is shown in Example 265.

class base c : public component {
public:
function<result<void>()> foo {"foo", [&] () {
print ("base c::foo");

}obs

class call foo : public action {
exec e { exec::body, [&] () |
comp<base c>()->foo();
}
i
i

class der c¢ : public base c {
public:
function<result<void>()> foo {"foo", [&] () {
print ("der c::foo");
bl
}i

class pss_top : public component {
public:
comp_inst<base c> b{"b"};
comp inst<der c> d{"d"};
class test : public action {

}i

public:
action handle<base c::call foo> b foo{"b foo"},d foo{"d foo"};
constraint cl {"bfoo", b_foo->comp () == comp<pss_top>()->b};
constraint c2 {"dfoo", d foo->comp() == comp<pss top>()->d};

activity a {
sequence {

b foo,

d foo

Example 265—C++: Polymorphic function calls

Copyright © 2021 Accellera. All rights reserved.
317

Portable Test and Stimulus Standard 2.0 — April 2021

As discussed in 10.4, the qualified name of an action declared in a component is of the form component-
type::action-type'. In Example 266, the base component dma base c declares action xfer a.
The derived component dma_der c declares the compound action mult xfer a, which traverses the
xfer a action. Since dma der c inherits the xfer a action, the anonymous (by type) traversal in
mult xfer a correctly resolves to the xfer a action declared in the base component. It is thus not
necessary to further qualify the type name xfer a in the anonymous traversal inmult xfer a.

The component dma test c instantiates the derived component dma der c. The first traversal
statement in the activity is an anonymous traversal of the dma_der c::mult xfer a action. The next
statement anonymously traverses the dma base c::xfer a action. We can use the dma base_ c path
qualifier because the instantiated subcomponent of type dma der c is also considered a dma_base c
component. It would be illegal to refer to dma base c::mult xfer abecausemult xfer aisnot
declared in dma_base c. To promote reuse, the third anonymous traversal statement is preferred, referring
to dma der c::xfer a, since xfer a can be used without knowing whether it was declared in the
base component or the derived component. Note that, since there is only a single instance of the
dma der c component, the instance context of these traversals is the same.

component dma base c {
action xfer a {

}

component dma der c : dma base c {
action mult xfer a {
activity {
repeat (3) {
do xfer a; // dma base c::xfer a

}

component dma test c {
dma der c dma;

action test a {
activity {
do dma der c::mult xfer a;
do dma base c::xfer a;
do dma_der_c::xfer_a; // dma_base_c::xfer_a

}

Example 266—DSL: Derived type is also a base type

Copyright © 2021 Accellera. All rights reserved.
318

Portable Test and Stimulus Standard 2.0 — April 2021

In Example 267, there are two instances of the dma_der c component instantiated in dma_test_c. For
the first anonymous traversal of dma base c::xfer a, either instance may be chosen as context for the
xfer a action. In the second anonymous traversal, the comp attribute is constrained to specify that the
context component must be dma_test c.dmal. As stated in 10.6, the static type of the comp attribute of

dma der c::xfer aisactually dma base c, since that is its containing component type (See also
17.1.3).

Because comp is of type dma base c and not dma_ der c, it would be illegal to refer to fields of
dma der c as relative to comp, since these fields are not in dma base c. Rather, fields of
dma der c may be referred to relative to this.comp.dmal, which is the actual instance of
dma_ der c (which is also a dma base c) in which xfer a will execute. Thus, based on the actual
instance of a context component, we can constrain the fields of xfer a even though xfer a may not
have visibility otherwise to the dma_der c fields that control the constraints.

component dma base c {
action xfer a {
rand int 1i;

component dma der c : dma base c {
int J;
action mult xfer a {
activity {
repeat (3) |
do xfer a; // dma base c::xfer a

}

component dma test c {
dma der c dmal, dmaZ2;

action test a {

activity {
do dma base c::xfer a;
do dma der c::xfer a with {comp == this.comp.dmal;

(this.comp.dmal.j < 8) -> i>4;};

Example 267—DSL: Use of comp and this.comp with inheritance

Copyright © 2021 Accellera. All rights reserved.
319

Portable Test and Stimulus Standard 2.0 — April 2021

20.2 Type extension

Type extensions in PSS enable the decomposition of model code so as to maximize reuse and portability.
Model entities, actions, objects, components, and data types, may have a number of properties that are
logically independent. Moreover, distinct concerns with respect to the same entities often need to be
developed independently. Later, the relevant definitions need to be integrated, or woven into one model, for
the purpose of generating tests.

Some typical examples of concerns that cut across multiple model entities are:

— Implementation of actions and objects for, or in the context of, some specific target platform/lan-
guage.

— Model configuration of generic definitions for a specific device under test (DUT) / environment
configuration, affecting components and data types that are declared and instantiated elsewhere.

— Definition of functional elements of a system that introduce new properties to common objects,
which define their inputs and outputs.

Such crosscutting concerns can be decoupled from one another by using type extensions and then
encapsulated as packages (see 21.1).

Composite and enumeration types in PSS are extensible. They are declared once, along with their initial
definition, and may later be extended any number of times, with new body items being introduced into their
scope. Items introduced in extensions may be of the same kinds as those introduced in the initial definition.
Extension statements may appear in package and component definitions.

An extension statement explicitly specifies the kind of type being extended, which must agree with the
specific type named (see Syntax 132 and Syntax 133).

The overall definition of any given type in a model is the sum total of its definition statements—the initial
one along with extensions in active packages (see 21.1). The semantics of extensions are those of weaving
all those statements into a single definition.

Every type extension, regardless of whether it extends a package-level type or a component-level inner type,
is associated with the nearest package that lexically encloses its definition (an explicit package if enclosed
in a package_declaration statement or otherwise the unnamed global package (see 21.1)).

Members introduced in an extension of a type can be referenced throughout the package in which they were
introduced. As a corollary, members introduced in extensions associated with the global package can be
referenced everywhere. Members introduced in extensions cannot be referenced outside the scope of the
package in which the extension is defined unless the reference occurs in a lexical scope that wildcard-
imports that package.

These rules concern reference of static members as well as non-static members, and apply regardless of
whether fully-qualified static paths are used (for static members).

Copyright © 2021 Accellera. All rights reserved.
320

Portable Test and Stimulus Standard 2.0 — April 2021

20.2.1 DSL syntax

extend_stmt ::=
extend action type identifier { { action_body item } }
| extend component type identifier { { component body item } }
| extend struct_kind type_identifier { { struct body item } }

| extend enum type_identifier { [enum_item {, enum_item } | }
Syntax 132—DSL: type extension

20.2.2 C++ syntax

In C++, extension classes derive from a base class as normal, and then the extension is registered via the
appropriate extend xxx<> template class:

The corresponding C++ syntax for Syntax 132 is shown in Syntax 133.

pss::extend_action

Defined in pss/extend. h (see C.27).
template <class Foundation, class Extension> class extend action;

Extend an action.

pss::extend_component

Defined in pss/extend.h (see C.27).
template <class Foundation, class Extension> class extend component;

Extend a component.

pss::extend_structure

Defined in pss/extend.h (see C.27).
template <class Foundation, class Extension> class extend structure;

Extend a structure.

pss::extend _enum

Defined in pss/extend. h (see C.27).
template <class Foundation, class Extension> class extend enum;

Extend an enum.

Syntax 133—C++: type extension

Copyright © 2021 Accellera. All rights reserved.
321

Portable Test and Stimulus Standard 2.0 — April 2021

20.2.3 Examples

Examples of type extension are shown in Example 268 and Example 269.

enum config modes e {UNKNOWN, MODE A=10, MODE B=20};

component uart c {
action configure {
rand config modes e mode;
constraint {mode != UNKNOWN; }

package additional config pkg {
extend enum config modes e {MODE C=30, MODE D=50}

extend action uart c::configure {
constraint {mode != MODE D;}

Example 268—DSL: Type extension

PSS ENUM(config modes e, UNKNOWN, MODE A=10, MODE B=20);

class uart c : public component {
class configure : public action {
rand attr<config modes e> mode{"mode"};
constraint mode c {mode != config modes e::UNKNOWN};
i
type decl<configure> configure decl;
i
type decl<uart c> uart c decl;

namespace additional config pkg {
PSS EXTEND ENUM(config modes ext e, config modes e, MODE C=30,

// declare action extension for base type configure
class configure ext : public uart c::configure {

}i

// register action extension

extend action<uart c::configure, configure ext>
extend action configure ext;

}i

constraint mode c ext {"mode c ext", mode != config modes ext

MODE_D=50) ;

e::MODE D};

Example 269—C++: Type extension

Copyright © 2021 Accellera. All rights reserved.
322

Portable Test and Stimulus Standard 2.0 — April 2021

20.2.4 Composite type extensions

Any kind of member declared in the context of the initial definition of a composite type can be declared in
the context of an extension, as per its entity category (action, component, buffer, stream, state, resource,
struct, or enum).

Named type members of any kind, fields in particular, may be introduced in the context of a type extension.
Names of fields introduced in an extension shall not conflict with those declared in the initial definition of
the type. They shall also be unique in the scope of their type within the package in which they are declared.
However, field names do not have to be unique across extensions of the same type in different packages.

Fields are always accessible within the scope of the package in which they are declared, shadowing
(masking) fields with the same name declared in other packages. Members declared in a different package
are accessible if the declaring package is wildcard-imported into the scope of the accessing package or
component, given that the reference is unique. If the same field name or type name is wildcard-imported
from two or more separate packages, it shall be an error to reference it.

In Example 270 and Example 271, an action type is initially defined in the context of a component and later
extended in a separate package. Ultimately the action type is used in a compound action of a parent
component. The component explicitly wildcard-imports the package with the extension and can therefore
constrain the attribute introduced in the extension.

Copyright © 2021 Accellera. All rights reserved.
323

Portable Test and Stimulus Standard 2.0 — April 2021

component mem_ops_c {
enum mem block tag e {SYs MEM, A MEM, B MEM, DDR};

buffer mem buff s {
rand mem block tag e mem block;

}

pool mem buff s mem;
bind mem *;

action memcpy {
input mem buff s src buff;
output mem buff s dst buff;

package soc config pkg {
extend action mem ops c::memcpy {

rand int in [1, 2, 4, 8] ta_width; // introducing new attribute

constraint { // layering additional constraint
src_buff.mem block in [SYS MEM, A MEM, DDR];
dst buff.mem block in [SYS MEM, A MEM, DDR];
ta width < 4 -> dst buff.mem block != A MEM;

component pss top {
import soc config pkg::*;// explicitly importing the package grants

// access to types and type members
mem_ops_C mem_oOps;

action test {
mem ops c::memcpy cpyl, cpy2;
constraint cpyl.ta width == cpy2.ta width;// constraining an

// attribute introduced in an extension
activity {

repeat (3) {
parallel { cpyl; cpy2; };

Example 270—DSL: Action type extension

Copyright © 2021 Accellera. All rights reserved.
324

Portable Test and Stimulus Standard 2.0 — April 2021

class mem ops c : public component {
PSS_ENUM(mem block tag e, SYS MEM, A MEM, B MEM, DDR);

struct mem buff s : public buffer ({
rand attr<mem block tag e> mem block {"mem block"};
i
pool <mem buff s> mem{"mem"};
bind bl {mem};

class memcpy : public action {
input<mem buff s> src buff {"src buff"};
output<mem buff s> dst buff {"dst buff"};
bi
type decl<memcpy> memcpy decl;
}i

namespace soc_config pkg {
class memcpy ext : public mem ops c::memcpy {
using mem block tag e = mem ops c::mem block tag e;
// introducing new attribute
rand attr<int> ta width {"ta width", range (1) (2) (4) (8)};
constraint ¢ { // layering additional constraint
in { src buff->mem block, range(mem block tag e::SYS MEM)
(mem block tag e::A MEM)
(mem block tag e::DDR) 1},
in { dst buff->mem block, range(mem block tag e::SYS MEM)
(mem block tag e::A MEM)
(mem block tag e::DDR) 1},
if then { cond(ta width < 4),
dst_buff->mem block != mem block tag e::A MEM
}
b
}i
extend action<memcpy ext, mem ops c::memcpy> memcpy ext decl;

i

class pss_top : public component {
comp_inst<mem ops c> mem ops {"mem ops"};
class test : public action {
action handle<soc config pkg::memcpy ext> cpyl {"cpyl"},
cpy2 {"cpy2"};
// note - handles are declared with action extension class
// in order to access attributes introduced in the extension
constraint ¢ { cpyl->ta width == cpy2->ta width };
activity a {
repeat { 3,
parallel { cpyl, cpy2 }
}i
}i
b
type decl<test> test decl;
}i

Example 271—C++: Action type extension

Copyright © 2021 Accellera. All rights reserved.
325

Portable Test and Stimulus Standard 2.0 — April 2021

20.2.5 Enumeration type extensions

Enumeration types can be extended in one or more package contexts, introducing new enum items to the
domain of all variables of that type. Each enum item in an enum type shall be associated with an integer
value that is unique across the initial definition and all the extensions of the type. Enum item values are
assigned according to the same rules they would be if all the enum items appeared in the initial definition,
according to the order of package evaluations. An explicit conflicting value assignment shall be illegal.

An enum item introduced in an extension can be referenced within the package in which the extension is
defined. Outside that package, enum items can be referenced inside a lexical scope that wildcard-imports
the respective package.

In Example 272 and Example 273, an enum type is initially declared empty and later extended in two
independent packages. Ultimately items are referenced from a component that wildcard-imports both
packages.

package mem defs pkg { // reusable definitions
enum mem block tag e {}; // initially empty

buffer mem buff s {
rand mem block tag e mem block;
}
}
package AB subsystem pkg {
import mem defs pkg ::*;

extend enum mem block tag e {A MEM, B MEM};
}
package soc_config pkg {

import mem defs pkg ::*;

extend enum mem block tag e {SYS MEM, DDR};
}
component dma c {
import mem defs pkg::*;
action mem2mem xfer {
input mem buff s src buff;
output mem buff s dst buff;
}
}
extend component dma c {
import AB_ subsystem pkg::*; // wildcard-importing the package
import soc_config pkg::*; // grants access to enum items

action dma test {

activity {
do mem2mem xfer with {
src_buff.mem block == A MEM;
dst buff.mem block == DDR;
i

Example 272—DSL: Enum type extensions

Copyright © 2021 Accellera. All rights reserved.
326

Portable Test and Stimulus Standard 2.0 — April 2021

namespace mem defs pkg { // reusable definitions
PSS_ENUM(mem_block tag e); // initially empty

class mem buff s : public buffer ({
rand attr<mem block tag e> mem block {"mem block"};

i
b

class dma c¢ : public component {
class mem2mem xfer : public action {
input <mem defs pkg::mem buff s> src buff {"src buff"};
output<mem defs pkg::mem buff s> dst buff {"dst buff"};
bi
type decl<memZmem xfer> memZmem xfer decl;

b

namespace AB subsystem pkg {
PSS EXTEND ENUM (mem block tag e ext,
mem defs pkg::mem block tag e, A MEM, B MEM);
i

namespace soc_config pkg {
PSS EXTEND ENUM (mem block tag e ext,
mem defs pkg::mem block tag e, SYS MEM, DDR);
bi

class dma c _ext : public dma c {
class dma_test : public action ({
action handle<mem2mem xfer> xfer {"xfer"};

activity a {
xfer.with (
xfer->src buff->mem block==AB subsystem pkg::
mem block tag e ext::A MEM
&& xfer->dst buff->mem block==soc config pkg::
mem block tag e ext::DDR)
bi
bi
type decl<dma test> dma test decl;
}i
extend component<dma c, dma c ext> dma c ext decl;

Example 273—C++: Enum type extensions

Copyright © 2021 Accellera. All rights reserved.
327

Portable Test and Stimulus Standard 2.0 — April 2021

20.2.6 Ordering of type extensions

Multiple type extensions of the same type can be coded independently, and be integrated and woven into a
single stimulus model, without interfering with or affecting the operation of one another. Methodology
should encourage making no assumptions on their relative order.

From a semantics point of view, order would be visible in the following cases:
— Invocation order of exec blocks of the same kind

— Multiple default value constraints, default disable constraints, and type override declarations
occurring in a scope of the same type

— Integer values associated with enum items that do not explicitly have a value assignment
The initial definition always comes first in ordering of members. The order of extensions conforms to the
order in which packages are processed by a PSS implementation.

NOTE—This standard does not define specific ways in which a user can control the package processing order.

20.2.7 Template type extensions
Template types, as all other user-defined types, may be extended using the extend statement.

Template types may be extended in two ways:
a) Extending the generic template type. The extension will apply to all instances of the template type.

b) Extending the template type instance. The extension will apply to all instances of the template type
that are instantiated with the same set of parameter values.

NOTE—Partial template specialization is not supported.

NOTE—Since PSS/C++ does not support template types (see 12.1), type extension of template types is obviously not
supported.

20.2.7.1 Examples

Examples of extending the generic template type and the template type instance are shown in Example 274.

Copyright © 2021 Accellera. All rights reserved.
328

Portable Test and Stimulus Standard 2.0 — April 2021

struct domain s <int LB = 4, int UB = 7> {
rand int attr;
constraint attr >= LB && attr <= UB;

struct container s {
domain s<2, 7> domA; // specialized with LB UB = 7
domain s<2, 8> domB; // specialized with LB = 2, UB = 8
}

1
N
~

extend struct domain s {
rand int attr all; // container s::domA and container s::domB
// will have attr_all
constraint attr all > LB && attr all < UB;
}

extend struct domain s<2> { // extend instance specialized with
// LB =2, UB = 7 (default)
rand int attr 2 7; // container t::domA will have attr 2 7

constraint attr 2 7 > LB && attr 2 7 < UB; // parameters accessible in
// template instance extension

struct sub domain s<int MIN, int MAX> : domain_ s<MIN, MAX> {
rand int domain_ size;
constraint domain size == MAX - MIN + 1;

dynamic constraint half max domain {
attr >= LB && attr <= UB/2; // Error - LB and UB parameters not accessible
// in inherited struct

Example 274—DSL: Template type extension

In the example above, the generic template type extension is used to add attr all to all instances of
domain_s. The template type instance extension is used toadd attr 2 7 to the specific <2, 7> instance
of domain_s.

20.3 Combining inheritance and extension

It is important to understand that inheritance creates a new type derived from the base type, while extension
modifies the definition of an existing type. Once a derived type is created by inheriting from a base type, the
derived type may be extended just as any other type. In this case, the extensions to the derived type do not
affect the base type. However, since a derived type inherits from its base type, any extensions to the base
type will also affect the derived type. If multiple types are derived from the same base type, extensions to the
base type will affect all derivations thereof.

Extending types in a component scope is only allowed for types that are defined in that scope. It shall be
illegal to extend a type defined in a base component type from a derived or unrelated component type.

Copyright © 2021 Accellera. All rights reserved.
329

Portable Test and Stimulus Standard 2.0 — April 2021

In Example 275, by extending action der a in component der c, we add a new constraint on the j field.
This constraint is added to the existing constraints in the initial definition of der a. By extending action
base ainthe base c extension, we add a new constraint, 1 > 2, which is then inherited by the derived
action, der a. The result is that J is constrained to be greater than 7, implying that i must be less than 5,
and the additional constraint requires that i must also be greater than 2.

The attempt to extend action base a in component der c is illegal, since base a was originally
declared in base c, which is a different type from der c.

component base c {
action base a {
rand int i;
rand bit[31:0] b;
constraint { i < 10; }
constraint ¢ { b > 7; }

component der c : base c {
action der a : base a {
rand int j;
constraint { j > 5 -> i < 5; }
constraint ¢ { j < 10 -> b < 128; }

extend action der a {
constraint { j > 7; }

}

extend action base a {...} // ILLEGAL
}

extend component base c {
extend action base a {
constraint { i > 2; }

}

Example 275—DSL: Combining inheritance and extension

In Example 277, in the pss_top root action, the anonymous traversal of der c::base a will use the
base a action as extended in base c in the global scope. Thus, the constraints 1 > 2and i < 10 will
apply. Its execution context will be either instance c1 or c2 of der c.

The anonymous traversal of der c::der a similarly will use the extended definition of der a, but the
with constraint forces the execution context to be instance cl. Note that the constraint c in
der c::der a masks the original constraint ¢ in base c: :base_a, so the resolved set of applicable
constraints will be:

- > 7
— 1 < 5(duetoconstraint 3 > 5 -> 1 < 5)
— 3 <10 -> b < 128

Copyright © 2021 Accellera. All rights reserved.
330

Portable Test and Stimulus Standard 2.0 — April 2021

component base c {
action base a {
rand int 1i;
rand bit[31:0] b;
constraint { i < 10; }
constraint ¢ { b > 7; }

}

component der ¢ : base c {
action der a : base a {
rand int j;
constraint { J > 5 -> i < 5; }
constraint ¢ { j < 10 -> b < 128; }

}

extend component der c {
extend action der a {
constraint { j > 7; }
}
}

extend component base c {
extend action base a {
constraint { i > 2; }
}
}

component pss top {
der c cl, c2;

action root {
activity {
do der c::base a;
do der c::der a with {comp == this.comp.cl; };

}

Example 276—DSL: Inheritance and extension of constraints

20.4 Access protection

By default, all data attributes of components, actions, and structs have public accessibility. The default
accessibility can be modified for a single data attribute by prefixing the attribute declaration with the desired
accessibility. The default accessibility can be modified for all attributes going forward by specifying a
block-access modifier.

The following also apply:
a) A public attribute is accessible from any element in the model.
b) A private attribute is accessible only from the element in which the attribute is declared.

c) A protected attribute is accessible only from the element in which the attribute is declared, from
sub-elements that inherit from it, and from their extensions.

Copyright © 2021 Accellera. All rights reserved.
331

Portable Test and Stimulus Standard 2.0 — April 2021

Example 277 shows using a per-attribute access modifier to change the accessibility of the random attribute
b. Fields a and c are publicly accessible.

struct S1 {

rand int a; // public accessibility (default)
private rand int b; // private accessibility
rand int c; // public accessibility (default)

Example 277—DSL: Per-attribute access modifier

Example 278 shows using block access modifiers to set the accessibility of a group of attributes. Fields w
and x are private due to the private: directive. Field y is public because its access modifier is explicitly
specified. Field z is private, since the private: block access modifier is in effect. Field s is public, since the
preceding public: directive has changed the default accessibility back to public.

struct S2 {
private:
rand int w; // private accessibility
rand int x; // private accessibility
public rand int y; // public accessibility
rand int z; // private accessibility
public:
rand int s; // public accessibility
}

Example 278—DSL: Block access modifier

20.5 Overriding types

The override block (see Syntax 134 and Syntax 135) allows type- and instance-specific replacement of the
declared type of a field with some specified subtype.

Overrides apply to action fields, struct attribute fields, and component instance fields. In the presence of
override blocks in the model, the actual type that is instantiated under a field is determined according to the
following rules:

a) Walking from the field up the hierarchy from the contained entity to the containing entity, the appli-
cable override directive is the one highest up in the containment tree.

b) Within the same container, instance override takes precedence over type override.

c) For the same container and kind, an override introduced later in the code takes precedence.

Overrides do not apply to reference fields, namely fields with the modifiers input, output, lock, and share.
Component-type overrides under actions as well as action-type overrides under components are not
applicable to any fields; this shall be an error.

Copyright © 2021 Accellera. All rights reserved.
332

Portable Test and Stimulus Standard 2.0 — April 2021

20.5.1 DSL syntax

override_declaration ::= override { { override stmt } }
override_stmt ::=
type_override
| instance override
| stmt_terminator
type_override ::= type type_identifier with type identifier ;

instance_override ::= instance hierarchical id with type identifier ;

Syntax 134—DSL: override declaration

20.5.2 C++ syntax

The corresponding C++ syntax for Syntax 134 is shown in Syntax 135.

pss::override_type
Defined in pss/override.h (see C.38).
template <class Foundation, class Override> class override type;

Type override declaration.

pss::override_instance

Defined in pss/override.h (see C.38).
template <class Override> class override instance;

Instance override declaration.

Syntax 135—C++: override declaration

20.5.3 Examples

Example 279 and Example 280 combine type- and instance-specific overrides with type inheritance. Action
reg2axi top specifies that all axi write action instances shall be instances of
axi write action x. The specific instance xlator.axi action shall be an instance of
axi write action x2. Action reg2axi top x specifies that all instances of
axi write action shall beinstances of axi write action_ x4, which supersedes the override in
reg2axi top. In addition, action reg2axi top x specifies that the specific instance
xlator.axi action shall be aninstance of axi write action x3.

Copyright © 2021 Accellera. All rights reserved.
333

Portable Test and Stimulus Standard 2.0 — April 2021

action axi write action { ... };

action xlator action {
axi write action axi action;
axi write action other axi action;
activity {
axi action; // overridden by instance
other axi action; // overridden by type
}
i

action axi write action x axi write action { ... };
action axi write action x2 axi write action x { }s
action axi write action x3 axi write action x { b
action axi write action x4 axi write action x { }i
action regZaxi top {

override {
type axi write action with axi write action x;
instance xlator.axi action with axi write action x2;

xlator action xlator;
activity {
repeat (10) {

xlator; // override applies equally to all 10 traversals

}
i
action regZaxi top x
override {
type axi write action with axi write action x4;
instance xlator.axi action with axi write action x3;

regZ2axi top {

b

Example 279—DSL: Type inheritance and overrides

Copyright © 2021 Accellera. All rights reserved.
334

Portable Test and Stimulus Standard 2.0 — April 2021

class axi write action : public action { ... };

class xlator action : public action {
action handle<axi write action> axi action {"axi action"};
action handle<axi write action> other axi action
{"other axi action"};

activity a {
axi action, // overridden by instance
other axi action // overridden by type
}i
bi

class axi write action x : public axi write action { ... };

class axi write action x2 : public axi write action x { ... };
class axi write action x3 : public axi write action x { ... };
class axi write action x4 : public axi write action x { ... };

class reg2axi top : public action ({
override type<axi write action,
axi write action x> override type decl;
override instance<axi write action x2>
_override inst 1{xlator->axi action};

action handle<xlator action> xlator {"xlator"};

activity a {
repeat { 10,
xlator // override applies equally to all 10 traversals
}
}i
}i

class reg2axi top x : public reg2axi top {
override type<axi write action,
axi write action x4> override type decl;
override instance<axi write action x3>
override inst 2{xlator->axi_action};

}s

Example 280—C++: Type inheritance and overrides

Copyright © 2021 Accellera. All rights reserved.
335

Portable Test and Stimulus Standard 2.0 — April 2021

21. Source organization and processing

A PSS model is captured in one or more source units. Source units contain declarations of PSS elements.
Name resolution rules for types are specified with respect to source units. The bounds of a source unit are
specified either by a single file or by a collection of files identified to the PSS processing tool as being part
of a single source unit. The files comprising a multi-file source unit could be identified to the PSS
processing tool in several different ways. For example, the PSS processing tool could be instructed to
consider all PSS source files in a given directory to be a single source unit. The PSS processing tool could be
instructed to consider all PSS source files listed in a filelist to be a single source unit. Tool implementations
shall support both single-file and multi-file source unit processing modes, but this standard does not dictate
the mechanism by which source units shall be specified to the PSS processing tool.

A lexical scope must be fully contained within a single source file, independent of whether source files are
processed as single- or multi-file source units.

The processing order of a set of source units is user-specified to the PSS processing tool. This standard does
not dictate a specific processing order for files within a multi-file source unit, but tools may provide users
with means to control it.

21.1 Packages

Packages are a way to group, encapsulate, and identify sets of related definitions, namely type declarations
and type extensions. In a verification project, some definitions may be required for the purpose of generating
certain tests, while others need to be used for different tests. Moreover, extensions to the same types may be
inconsistent with one another, e.g., by introducing contradicting constraints or specifying different mappings
to the target platform. By enclosing these definitions in packages, they may coexist and be managed more
casily.

Packages also constitute namespaces for the types, functions, and constants declared in their scope. From a
namespace point of view, packages and components have the same meaning and use (see also 10.4).
However, in contrast to components, packages cannot be instantiated, and cannot contain attributes, sub-
component instances, or concrete action definitions.

Type declarations, functions, and constants declared under the scope of a package declaration statement are
members of that package. Package members may be referenced from outside the package using a qualified
reference or made visible by importing them into the referencing scope (see 21.1.3).

Definition statements that do not occur inside the lexical scope of a package declaration are implicitly
associated with the unnamed global package. Elements in the unnamed global package are visible to all
user-defined namespaces without the need for an import statement.

Tools may provide means to control and query which packages are active in the generation of a given test.
Tools may also provide ways to locate source files of a given package in the file system. However, these
means are not covered herein.

Copyright © 2021 Accellera. All rights reserved.
336

Portable Test and Stimulus Standard 2.0 — April 2021

21.1.1 Package declarations

21.1.1.1 DSL syntax

package declaration ::= package package id path { { package body item } }
package id path ::= package identifier { :: package identifier }
package_identifier ::= identifier
package body item ::=
abstract_action_declaration

| struct_declaration

| enum_declaration

| covergroup declaration

| function_decl

| import_class_decl

| procedural function

| import_function

| target_template function

| export_action

| typedef declaration

| import_stmt

| extend stmt

| const_field declaration

| component declaration

| package declaration

| compile_assert stmt

| package body compile if

| stmt_terminator

const_field declaration ::= [static | const data_declaration

Syntax 136—DSL: package declaration

The following also apply:

a) Multiple package statements can apply to the same package name. The package contains the mem-
bers and type extensions declared in all package scopes with the same name.

b) Inaconst field declaration, the static keyword is optional, but the field is a static constant even if
the static keyword is not used.

21.1.1.2 C++ Syntax

PSS/C++ does not provide features directly corresponding to the PSS/DSL package and import constructs.
The C++ namespace and using constructs provide similar functionality.

21.1.1.3 Examples

For an example of package usage, see 22.2.6.

Copyright © 2021 Accellera. All rights reserved.
337

Portable Test and Stimulus Standard 2.0 — April 2021

21.1.2 Nested packages
A package may be nested inside another package. There are two way to declare a nested package.

One way is to include a package declaration inside the outer package declaration, as shown in the following
example:

package my lib {
package impl {
struct internal impl s {}

Example 281—DSL: Hierarchical declaration of nested package

In the example above, the fully-qualified type name of the struct internal impl s is
my lib::impl::internal impl s.

Nested packages can also be specified with double-colon-separated package identifier paths. In the example
below, the fully-qualified type mname of the struct internal impl s is also
my lib::impl::internal impl_ s.

package my lib::impl {
struct internal impl s {}

}

Example 282—DSL: Direct declaration of nested package

Declaring a package inside another is equivalent to directly specifying a hierarchical name for a package
namespace

The declaration order of package namespaces is not significant. So, for example, it is not necessary to
declare an outer namespace prior to declaring an inner namespace. In the example below, two structs are
declared. my lib::impl::internal impl s is declared first, while my 1lib::public s is
declared second.

package my lib::impl {
struct internal impl s {}

}

package my lib {
struct public s {}
}

Example 283—DSL: Declaration of nested package before outer package

Copyright © 2021 Accellera. All rights reserved.
338

Portable Test and Stimulus Standard 2.0 — April 2021

21.1.3 Referencing package members

There are three ways to reference package members from outside the scope of their declaring package:
qualified reference, explicit import, and wildcard import.

One way to use a declaration from a package is to reference it explicitly using the scope resolution operator
::. This is called a qualified reference. Example:

my lib::public s my struct;

An alternate method for referencing package declarations is via the import statement. Importing an
identifier into a package or component makes that identifier visible within that lexical scope without
requiring the scope resolution operator. An import statement is a name resolution directive, and does not
introduce symbol declarations or symbol aliases into the namespace in which it appears.

Two forms of the import statement are provided: explicit import and wildcard import. An explicit import
only imports the symbols specifically referenced by the import. Example:

import my lib::public_s;
public s my struct;

It shall be illegal to explicitly import an identifier from a package if the same name is already declared in the
importing namespace or to explicitly import the same identifier from two different packages.

A wildcard import allows all identifiers declared within a package to be imported into a lexical scope,
provided the identifier is not otherwise defined anywhere in the importing component or package. A
wildcard import also allows access from the lexical scope to members declared in type extensions found in
the imported package. Note that type extensions are unnamed and therefore cannot be explicitly imported.

A wildcard import is of the following form:

import my lib::*;
public s my struct;

A local declaration of an identifier takes precedence over a wildcard import of the same identifier. An
explicit import of an identifier takes precedence over a wildcard import of the same identifier from a
different package. If the same name is declared in two wildcard-imported packages, neither is imported, a
qualified reference must be used.

import specifications may appear in package and component declaration statements and in component
extension statements, but shall come first in those statements. The scope of an import statement is limited to
the declaration statement or extension statement in which it appears.

Elements in the unnamed global package are visible to all user-defined namespaces without the need for an
explicit import statement. To explicitly refer to a type declared in the unnamed global package, prefix the

2

type name with “: :”.

import statements are not transitive. If package B imports package A, package B does not have unqualified
access to contents declared in packages that A may have imported. Package B must import those packages
directly in order to have unqualified access to contents declared within them.

Copyright © 2021 Accellera. All rights reserved.
339

Portable Test and Stimulus Standard 2.0 — April 2021

21.1.3.1 DSL syntax

import_stmt ::= import package import_pattern ;
package import pattern ::= type _identifier [package import qualifier]
package import_qualifier ::= package import_wildcard | package import_alias

package import wildcard ::=:: *

package import_alias ::= as package_identifier
Syntax 137—DSL: import statement

Note: Package aliases are described in 21.1.4.

Importing content from a package namespace using a wildcard only imports content from that exact
namespace, and does not import content from rested namespaces.

Note that using a wildcard import on an outer package namespace, as shown with pl: : * in the example
below, allows inner package namespaces to be located without specifying the fully-qualified name of the
namespace. In this example, struct pl: :p2: :u can be referenced as p2: : u because the elements of p1
are imported with a wildcard import.

package pl {
struct s { }
package p2 {
struct u { }
}
}

struct t { }
struct s { }

package top {
import pl::*;
struct my s {
s vl; // Resolves to pl::s
t v2; // Resolves to ::t
p2::u v3; // Resolves to pl::p2::u

Example 284—DSL: Importing the name of a nested package

21.1.4 Package aliases

The use of nested namespaces benefits from the ability to define a named alias for a given namespace. This
is used when it is necessary to disambiguate between content declared in different namespaces and it is
undesirable to use the fully-qualified name of the namespace. The syntax for declaring a package alias is
shown in Syntax 137.

A namespace alias is only visible in the lexical scope (e.g., a package declaration statement) in which it
appears. It is a name resolution shortcut, and does not introduce a new entity into the scope in which it is
specified.

Copyright © 2021 Accellera. All rights reserved.
340

Portable Test and Stimulus Standard 2.0 — April 2021

In the example below, this means that pl and p2 are not visible in the scope of any other declaration
statement of consumer pkg. pl and p2 may not be referenced from outside the package (e.g., as
consumer pkg::pl). Wildcard-importing consumer pkg into another package namespace does not
make symbols pl and p2 visible in that namespace.

package pkgl::a::b::c {
struct my s {}

}

package pkg2::d::e::f {
struct my s {}

}

package consumer pkg {
import pkgl::a::b::c as pl;
import pkg2::d::e::f as p2;
struct s {

pl::my s vl 1; // Refers to pkgl::a::b::c::my s
pkgl::a::b::ciimy s vl 2; // vl 1 and vl 2 have the same type
p2::my_s v2; // Refers to pkg2::d::e::f::my s

Example 285—DSL: Package alias

21.2 Declaration and reference ordering

Elements may be referenced after their declaration, within the same source unit or in a subsequent source
unit. PSS also enables referencing most elements prior to their declaration within the same source unit, but
places stronger ordering requirements on some elements. The following apply:

a) A variable declared and referenced within a procedural block or an activity block may only be refer-
enced after its declaration.

b) A constant or enum item may be referenced in the initialization assignment expression of another
constant only after its declaration.

c¢) A constant declared within a type may reference type-level and package-level constants in its initial-
ization assignment expression. A package-level constant may only reference other package-level
constants in its initialization assignment expression.

21.2.1 Examples

In the example below, filel.pss (the first source unit) declares a component named 1ib base c.
file2.pss (the second source unit) declares a type my base c that inherits from 1ib base c, so
filel.pss must be processed before file2.pss. However, within file2.pss, the declaration of

my a c that refers to my base c as a super-type may be placed either before or after the declaration of
my base c.

Copyright © 2021 Accellera. All rights reserved.
341

Portable Test and Stimulus Standard 2.0 — April 2021

// Source Unit 1 (filel.pss)
component lib base ¢ { /* ... */ }

// Source Unit 2 (file2.pss)
component my a ¢ : my base c { /* ... */ }

component my base ¢ : 1lib base c { /* ... */ }

Example 286—DSL: Reference to a previous source unit

In the example below, action pss_top::entry declares a field named val that is referenced in the
constraint val c. Field val may be declared before or after the constraint that references it.

component pss_top {
action entry {
constraint val c {
val < 10;
}

rand bit[4] val;

Example 287—DSL: Reference to a later-declared action field

In the example below, a local variable is declared within an exec block. As per requirement a) above, the
variable val may only be referenced after it is declared.

function int get val();

component pss_ top {
exec init up {
int val;
val = get val();

Example 288—DSL: Reference to local variable after declaration

In the example below, constants are declared and referenced in initialization expressions of other constants.
As per requirement b) above, a constant must be declared prior to its reference in an initialization expression
of a constant or in a type-width expression. Consequently, it is an error to reference the yet undeclared
constant C in the initialization expression for A. It is legal to reference the previously declared constant A in
the initialization expression for B.

package my {
const int A = C /* Error: C is not yet declared */;
const int B A+ 2;
const int C 3;

Example 289—DSL.: Initialization of constants

Copyright © 2021 Accellera. All rights reserved.
342

Portable Test and Stimulus Standard 2.0 — April 2021

21.3 Name resolution

For the purpose of the following description, the term namespace refers to either a package or a type (e.g.,
component, struct) under which static members (types, static constants, static functions, and enum items)
may be declared.

The members of a package namespace include the members declared in the union of all the package
definition statements of that package (see 21.1.1.1). The visible members of a type namespace include the
members declared in the union of the type’s initial definition and all visible extensions of the type (see 20.2),

Members of PSS namespaces shall have unique names in the context of their namespace, but members may
have the same name if declared under different namespaces.

Types can be referenced in different contexts, such as declaring a variable, extending a type, or inheriting
from a type. In all cases, a qualified name of the type can be used, using the scope operator ::.

Constants, static functions, and enum items can be referenced in expression contexts. In these cases too, a
qualified name can be used, using the scope operator.

Informally, unqualified entity names can be used in the following cases:
— when referencing an entity that was declared in the same namespace or in an enclosing namespace.

— when referencing an entity that was declared in a package imported into a logical scope enclosing
the reference.

Precedence is given to the current namespace scope; explicit qualification can be used to override the
precedence.

Formally, unqualified names are resolved using the following process, starting with step a, continuing with
step b, and then step c, in the absence of resolution in previous steps:

a) If the reference occurs within an expression whose expected type is an enumeration type (see 9.4.3
for definition of expected type):

1) Search enum items declared in the expected type’s initial definition.

2) Search enum items declared in the expected type’s extensions that are defined under the current
package or one of its containing packages (see 20.2), or in the expected type’s extensions that
are within a package wildcard-imported into a lexical scope enclosing the reference.

b) If the reference occurs within the definition of a type:
1) Search members of the type declared in its initial definition.

2) Search members of the type declared in its extensions that are defined under the current pack-
age or one of its containing packages (see 20.2), or in its extensions that are within a package
wildcard-imported into a lexical scope enclosing the reference.

3) Ifthe type inherits from a super-type, search members declared in the super-type using the pro-
cess described in steps 1 and 2. Repeat for all super-types in the inheritance hierarchy.

4) If the scope is a component initial definition or extension:

i) Search package members explicitly imported into the lexical scope of the initial definition
or extension, respectively.

ii) Search members of packages wildcard-imported into the lexical scope of the initial defini-
tion or extension, respectively.

5) If the type is an inner type (e.g., an action declared inside a component), search members
declared in the outer type using the process described in steps 1 through 4 above.

Copyright © 2021 Accellera. All rights reserved.
343

Portable Test and Stimulus Standard 2.0 — April 2021

c¢) Search package namespaces, starting with the package namespace of the immediate lexical scope
and working outward along the package hierarchy. At each level, do the following:

1) Search package members declared under all package declarations of the same package.

2) If the reference is enclosed in a lexical package scope corresponding to the namespace being
searched:

i) Search package members explicitly imported into the lexical scope.of the corresponding
package_declaration statement.

ii) Search members of packages wildcard-imported into the lexical scope.of the correspond-
ing package declaration statement.

A qualified name is composed of double-colon-separated elements. Qualified name elements are resolved by
first applying the same process for unqualified names described above on the first element of the static path.
Having resolved the first element to a certain package/type, the rest of the static path is used to access down
from it.

21.3.1 Name resolution examples

In Example 290, s is declared in three places: imported package P1, encapsulating package P2, and nested
component C1. The s referenced in nested component C1 is resolved to the s locally defined in nested
component C1. Using qualifiers, P1: : s would be used to resolve to s in imported package P1,and P2: : s
would be used to resolve to s in encapsulating package P2.

package P1 {
struct s {};

}7

package P2 {
struct s {};

component Cl {
import Pl::*;
struct s {};
s f;

}i

}i

Example 290—DSL: Name resolution to declaration in nested hamespace

Copyright © 2021 Accellera. All rights reserved.
344

Portable Test and Stimulus Standard 2.0 — April 2021

In Example 291, s is declared in two places: imported package P1 and encapsulating package P2. The s
referenced in nested component C1 is resolved to the s defined in imported package P1. Using qualifiers,
P2: :s would be used to resolve to s in encapsulating package P2.

package P1 {
struct s {};

}7

package P2 {
struct s {};

component Cl {
import Pl::*;
s f;
}i
}i
Example 291—DSL: Name resolution to declaration in imported package in nested namespace

In Example 292, s is declared in two places: imported package P1 and encapsulating package P2. The s
referenced in nested component C1 is resolved to the s defined in encapsulating package P2. Using
qualifiers, P1: : s would be used to resolve to s in package P1 imported in encapsulating package P2.

package P1 {
struct s {};

}i

package P2 {
import Pl::*;
struct s {};

component C1l {
s f;
}i
}7

Example 292—DSL : Name resolution to declaration in encapsulating package

In Example 293, s is declared in one place: imported package P1. The s referenced in nested component C1
is resolved to the s defined in package P1 imported inside encapsulating package P2.

package P1 {
struct s {};

}i

package P2 {
import Pl::*;

component C1l {
s f;
}:
}
Example 293—DSL: Name resolution to declaration in imported package in encapsulating package

Copyright © 2021 Accellera. All rights reserved.
345

Portable Test and Stimulus Standard 2.0 — April 2021

Example 294 shows a case where importing the encapsulating package has no effect on the resolution rules.
s will resolve to the same s in P2.

package P1 {
struct s {};
bi

package P2 {
import Pl::*;
struct s {};

component C1l {
import P2::%*;
s f;

}i

Example 294—DSL : Package import has no effect on name resolution

In Example 295 below, a_pkg declares a struct S1, b pkg imports content from a pkg, and b_pkg
declares a struct S2 that inherits from S1. pss_top imports content from b pkg.

— Line (1): S2 is resolved via the import of b_pkg.

— Line (2): Imports are not transitive. Therefore, the import of b _pkg does not make content from
a_pkg visible in component pss_top.

— Line (3): S1 can be referenced with a fully-qualified type name, a_pkg: : S1.

— Line (4): Importing a package does not introduce symbols into the importing namespace.

package a_pkg {
struct S1 { }
}

package b pkg {
import a pkg::*;
struct S2 : S1 { }
}

component pss_top {
import b pkg::*;

s2 s2 i0; // (1) OK
S1 sl il; // (2) Error: Sl is not made visible
// by importing b_pkg

a pkg::81 sl i2; // (3) OK: Sl is declared in a pkg
b pkg::S1 sl i3; // (4) Error: import of a pkg in b pkg
// does not make S1 a b pkg member
}i

Example 295—DSL: Package import is not a declaration

Copyright © 2021 Accellera. All rights reserved.
346

Portable Test and Stimulus Standard 2.0 — April 2021

Example 296 demonstrates the use of qualified and unqualified enum item references. The unqualified

references are resolved based on the expected type in context, namely the type of the expression on the other
side of the equality operator and on the left-hand side of the in operator.

component my ip c {
enum mode e {A, B, C, D};
action my op {
rand mode e mode;

}

component pss_top {
my ip ¢ my ip;
action test {
my ip c::my op op;
constraint op.mode == my ip c::mode e::A;
constraint op.mode == A;
constraint op.mode in [A, C, DJ];

activity {
op;
}

Example 296—DSL: Resolution of enum item references

Copyright © 2021 Accellera. All rights reserved.
347

Portable Test and Stimulus Standard 2.0 — April 2021

22. Test realization

A PSS model interacts with foreign languages in order to drive, or bring about, the behaviors that leaf-level
actions represent in a test scenario. This is done by calling application programming interfaces (APIs)
available in the execution environment, or generating foreign language code that executes as part of the test.
In addition, external code, such as reference models and checkers, may be used to help compute stimulus
values or expected results during stimulus generation.

The platform on which test generation takes place is generally referred to as the solve platform, while the
platform on which test execution takes place is called the target platform.

Logic used to help compute stimulus values is coded using procedural constructs (see 22.7), possibly
invoking a foreign procedural interface on the solve platform (see 22.4). The implementation of runtime
behavior of leaf-level actions can similarly be specified with procedural constructs, possibly invoking a
foreign procedural interface on the target platform or invoking farget template functions (see 22.6).
Alternatively, implementation of actions and other scenario entities can be specified as target code template
blocks (see 22.5). In all cases, the constructs for specifying implementation of PSS entities are called exec
blocks.

Functions can be defined in PSS as a means to factor out and reuse portable procedural logic required for the
implementation of scenario entities in exec blocks (see 22.3). Functions may take parameters and optionally
return a result value. Like exec blocks, functions are defined in terms of procedural constructs or as target
code templates.

22.1 exec blocks

exec blocks provide a mechanism for associating specific functionality with a component, an action, a flow/
resource object, or a struct (see Syntax 138 and Syntax 139). A number of exec block kinds are used to
implement scenario entities.

— init_down and init_up exec blocks allow component data fields to be assigned a value as the com-
ponent tree is being elaborated (see 10.5).

— body exec blocks specify the actual runtime implementation of atomic actions.

— pre_solve and post_solve exec blocks of actions, flow/resource objects, and structs are a way to
involve arbitrary computation as part of the scenario solving.

— Other exec kinds serve more specific purposes in the context of pre-generated test code and auxil-
iary files.

Copyright © 2021 Accellera. All rights reserved.
348

Portable Test and Stimulus Standard 2.0 — April 2021

22.1.1 DSL syntax

exec_block stmt ::=
exec_block
| target_code exec_block
| target file exec_block
| stmt_terminator
exec_block ::= exec exec_kind { { exec_stmt } }
exec_kind ::=
pre_solve
| post_solve
| body
| header
| declaration
| run_start
| run_end
| init_down
| init_up
| init
exec_stmt ;1=
procedural stmt
| exec_super stmt
€xec_super_ stmt ::= super ;
target_code exec_block ::= exec exec_kind language identifier = string_literal ;

target file exec block ::= exec file filename_string = string_literal ;

Syntax 138—DSL: exec block declaration

The following also apply:

a)

b)

©)

d)

exec block content is given in one of two forms: as a sequence of procedural constructs (possibly
involving foreign function calls) or as a text segment of target code parameterized with PSS attri-
butes.

In either case, a single exec block is always mapped to implementation in no more than one foreign
language.

In the case of a target-template block, the target language shall be explicitly declared; however,
when using procedural constructs, the corresponding language may vary.

“exec init” is an alias for “exec init_up,” and is considered deprecated as of PSS 2.0. The keyword
“init” may be removed in a future version of this standard. Users should use “init_up” instead.

22.1.2 C++ syntax

The corresponding C++ syntax for Syntax 138 is shown in Syntax 139.

Copyright © 2021 Accellera. All rights reserved.
349

Portable Test and Stimulus Standard 2.0 — April 2021

pss::exec
Defined in pss/exec.h (see C.25).

class exec;

enum ExecKind {

Declare an exec block.

Member functions

/// Kinds of exec blocks

run_start,
header,
declaration,
init down,
init up,
init,
pre solve,
post solve,
body,
run_end,
file

b

exec (ExecKind kind, std::initializer list<detail::AttrCommon>&& write vars)
: declare inline exec
exec (ExecKind kind, const char* language or file,
const char* target template) :declare target template exec
exec (ExecKind kind, std::string&& language or file,
std::string&& target template) :declare target template exec
exec (ExecKind kind, const detail::ExecStmté& r) : declare native exec -
with single exec statement
exec (ExecKind kind, const detail::AlgebExpré& r) :declare native exec -
with single AlgebExpr statement
exec (ExecKind kind, const detail::Stmt& /* sequence& */ r) :declare native exec -
with sequence statement
exec (ExecKind kind, std::function<void()> genfunc) :declare generative procedural exec
exec (ExecKind kind, std::string&& language or file,
std::function<void (std::ostream&)> genfunc) :declare generative target-template exec

Syntax 139—C++: exec block declaration

exec blocks can be specified in the following ways in C++:

A native procedural exec block (similar to DSL) given as a single procedural statement, typically a
sequence statement enclosing a sequential block

A target-template block (similar to DSL) for target execs (described in 22.5)
An inline exec for solve execs (described in 22.8) — available only when using PSS/C++

A generative exec with full support for procedural constructs (described in 22.9 and 22.7) — avail-
able only when using PSS/C++

A native exec is perhaps the simplest form for an exec block that is not specified directly in a target
language. This form can be used when the exec block contents have only variable assignments or function

calls.

For example:

exec e {exec::init up, a = 1};

Copyright © 2021 Accellera. All rights reserved.
350

Portable Test and Stimulus Standard 2.0 — April 2021

If multiple statements need to be evaluated, these should be enclosed in a sequence construct like this:

exec e {exec::init up, sequence {a =1, b = 2, func()}};

22.1.3 exec block kinds

The following list describes the different exec block kinds:

pre_solve—valid in action, flow/resource object, and struct types. The pre_solve block is pro-
cessed prior to solving of random-variable relationships in the PSS model. pre_solve exec blocks are
used to initialize non-random variables that the solve process uses. See also 17.4.10.

post_solve—valid in action, flow/resource object, and struct types. The post_solve block is pro-
cessed after random-variable relationships have been solved. The post_solve exec block is used to
compute values of non-random fields based on the solved values of random fields. See also 17.4.10.

body—valid in action types. The body block constitutes the implementation of an atomic action.
The body block of each action is invoked in its respective order during the execution of a sce-
nario—after the body blocks of all predecessor actions complete. Execution of an action’s body
may be logically time-consuming and concurrent with that of other actions. In particular, the invoca-
tion of exec blocks of actions with the same set of scheduling dependencies logically takes place at
the same time. Implementation of the standard should guarantee that executions of exec blocks of
same-time actions take place as close as possible.

run_start—valid in action, flow/resource object, and struct types. The run_start block is a proce-
dural non-time-consuming code block to be executed before any body block of the scenario is
invoked. It is used typically for one-time test bring-up and configuration required by the context
action or object. exec run_start is restricted to pre-generation flow (see Table 24).

run_end—valid in action, flow/resource object, and struct types. The run_end block is a proce-
dural non-time-consuming code block to be executed after all body blocks of the scenario are com-
pleted. It is used typically for test bring-down and post-run checks associated with the context action
or object. exec run_end is restricted to pre-generation flow (see Table 24).

init_down/init_up(init)—valid in component types. The init_down and init_up blocks are used to
assign values to component attributes and to initialize foreign language objects. Component
init_down and init_up blocks are called before the scenario root action’s pre_solve block is
invoked. init_down and init_up blocks may not call target template functions.

1) init_down—Starting with the root component, init_down blocks are evaluated top-down for
each component in the hierarchy. The relative order of evaluating init_down blocks for compo-
nents at the same level of hierarchy is undefined. For any component, the init_down block
shall be evaluated before its init_up block is evaluated.

2) init_up—For a leaf-level component (i.e., one that does not instantiate any subcomponents),
the init_up block shall be evaluated after its init_down block (if any). A parent component’s
init_up block shall be evaluated only after all subcomponent init_up blocks have been evalu-
ated.

header—valid in action, flow/resource object, and struct types. The header block specifies top-
level statements for header declarations presupposed by subsequent code blocks of the context
action or object. Examples are '#include’ directives in C, or forward function or class declara-
tions.

declaration—valid in action, flow/resource object, and struct types. The declaration block speci-
fies declarative statements used to define entities that are used by subsequent code blocks. Examples
are the definition of global variables or functions.

exec header and declaration blocks shall only be specified in terms of target code templates. All other exec
kinds may be specified in terms of procedural constructs or target code templates.

Copyright © 2021 Accellera. All rights reserved.
351

Portable Test and Stimulus Standard 2.0 — April 2021

22.1.4 Examples

In Example 297 and Example 298, the init_up exec blocks are evaluated in the following order:
a) 1init up in pss_top.sl
b) init up in pss_top.s2

c) init up in pss_top

This results in the component fields having the following values:

a) sl.base addr=0x2000 (init up in pss_top overwrote the value set by
init up in sub c)

b) s2.base addr=0x1000 (value set by init up in sub c)

component sub c {
int base_ addr;

exec init up {
base addr = 0x1000;
}
b

component pss_top {
sub _c sl, s2;

exec init up {
sl.base addr = 0x2000;
}
bi

Example 297—DSL: Data initialization in a component

class sub_c¢ : public component ({
attr<int> base addr {"base_ addr"};
exec e {exec::init up,
base addr = 0x1000
i
bi

class pss_top : public component {
comp_inst<sub c> sl{"sl"}, s2{"s2"};
exec e {exec::init up,
sl->base _addr = 0x2000
}i
}i

Example 298—C++: Data initialization in a component

In Example 299, the init_down and init_up blocks will be evaluated in the following order:
— init down in T
— init down in T.cl

- init down in T.c2

Copyright © 2021 Accellera. All rights reserved.
352

Portable Test and Stimulus Standard 2.0 — April 2021

— init up in T.cl
— init up in T.c2

— init up in T

component C {
exec init down {
}
exec init up {
}
}

component T {
C cl, c2;
exec init down ({
}
exec init up {

}

Example 299—DSL: init_down and init_up exec blocks

A diagram of the example is shown below:

T.c2:

y/ T.cl:C
init d
(e (&9 2

Figure 18—Order of invocation of init_down and init_up exec blocks

The order of initialization calls is annotated on each of the init_d(own) and init_u(p) blocks. Note that
init_down in T is called first, followed by init_ down in T. c1, etc.

Note that a tool is free to execute the exec init_down and init_up blocks of sibling instances in arbitrary
order. For example, while the diagram above shows init_down in T.c1 executing before init_down in
T . c2, the opposite order is also correct. The key requirements are that the exec init_down block of a parent
component instance (e.g., T) execute before the exec init_down block of any child component instances,
and that the exec init_up block of a parent component instance (e.g., T) execute after all exec init_up blocks

Copyright © 2021 Accellera. All rights reserved.
353

Portable Test and Stimulus Standard 2.0 — April 2021

of child component instances have executed. This implies that the following ordering of execution is also
legal:

— init down in T
— init down in T.cl
— init up in T.cl
— init down in T.c2
— init up in T.c2
— init up in T
In Example 300 and Example 301, component pss_top contains two instances of component sub_c,

named s1 and s2. Component sub_c contains a data field named base addr that controls the value to
function activate () when action A is traversed.

During construction of the component tree, component pss_top sets sl.base addr=0x1000 and
s2.base addr=0x2000.

Action pss_top: :entry traverses action sub_c: : A twice. Depending on which component instance
sub_c: :A is associated with during traversal, it will cause sub_c: : A to be associated with a different
base addr.

— If sub_c: :A executes in the context of pss_top.sl, sub c::Auses 0x1000.

— Ifsub_c::A executes in the context of pss_top.s2, sub_c::Auses 0x2000.

component sub c {
bit[32] base addr = 0x1000;
action A {
exec body {
// reference base addr in context component
activate (comp.base addr + 0x10);
// activate() is an imported function

component pss_top {
sub c sl, s2;
exec init up {
sl.base addr = 0x1000;
s2.base addr 0x2000;

}
action entry {
sub c::A a;
activity {
repeat (2) {
a; // Runs sub_c::A with 0x1000 as base_addr when
// associated with sl
// Runs sub c::A with 0x2000 as base addr when
// associated with s2

Example 300—DSL: Accessing component data field from an action

Copyright © 2021 Accellera. All rights reserved.
354

Portable Test and Stimulus Standard 2.0 — April 2021

class sub_c¢ : public component ({
attr<bit> base_ addr {"base addr", width (32), 0x1000};

class A : public action {
exec e {exec::body,
activate (comp<sub c>()->base addr + 0x10)
}i
}i
type decl<A> A decl;
}r

class pss_top : public component {
comp_inst<sub c> sl{"sl"}, s2{"s2"};

exec e {exec::init up,
sequence {
sl->base addr = 0x1000,
s2->base_addr = 0x2000

bi

class entry : public action {
action handle<sub c::A> a {"a"};

activity g {

repeat {2,
a // Runs sub _c::A with 0x1000 as base addr when associated with sl

// Runs sub c::A with 0x2000 as base addr when associated with s2

}
}i
}i
type decl<entry> entry decl;
}i

Example 301—C++: Accessing component data field from an action

For additional examples of exec block usage, see 22.2.6.

Copyright © 2021 Accellera. All rights reserved.
355

Portable Test and Stimulus Standard 2.0 — April 2021

22.1.5 exec block evaluation with inheritance and extension

Both inheritance and type extension can impact the behavior of exec blocks. See also 20.1 and 20.2.
22.1.5.1 Inheritance and shadowing

exec blocks are considered to be virtual, in that a derived type that defines an exec block masks the behavior
of a same-kind exec block (e.g., body) specified by its base type. Procedural exec blocks may include the
“super;” statement, which will execute the contents of the corresponding base-type exec block(s) at that

point (see 22.1.5.2).

In the following examples, print() is a target function that prints out a formatted line. In Example 302,
action B inherits from action A and shadows the pre_solve and body exec blocks defined by action A.

action A {
int a;

exec pre solve {
a=1;
}
exec body {
print ("Hello from A %d", a);
}
}

action B : A {
exec pre solve {
a=2;
}
exec body {
print ("Hello from B %d", a);
}

Example 302—DSL.: Inheritance and shadowing

When an instance of action B is evaluated, the following is printed:

Hello from B 2

Copyright © 2021 Accellera. All rights reserved.
356

22.1.5.2 Using super

Specifying “super;” as a statement in a subtype executes the behavior of the same-kind procedural exec
block(s) from the base type, allowing a type to prepend or append behavior. The “super ;” statement shall

Portable Test and Stimulus Standard 2.0 — April 2021

not be allowed in a target-template exec block.

In Example 303, both A1 and A2 inherit from action A. Both execute the pre_solve exec block inherited
from A. A1 invokes the body behavior of A, then displays an additional statement. A2 displays an additional

statement, then invokes the body behavior of A.

action A {
int a;

a=1;

}
}
}
action Al
super;
}
}

action A2

super;

}

exec body {
print ("Hello from A %d", a);

exec body {

exec body {
print ("Hello from A2 %d", a);

exec pre solve {

print ("Hello from Al %d", a);

Example 303—DSL: Using super

When an instance of A1 is evaluated, the following is printed:

Hello from A 1
Hello from Al 1

When an instance of A2 is evaluated, the following is printed:

Hello from A2 1
Hello from A 1

NOTE—PSS/C++ does not define a mechanism to invoke procedural blocks in a super-type—in other words, an equiv-

alent to exec_super _stmt

Copyright © 2021 Accellera. All rights reserved.
357

Portable Test and Stimulus Standard 2.0 — April 2021

22.1.5.3 Type extension

Type extension enables additional features to be contributed to action, component, and struct types. Type
extension is additive and all exec blocks contributed via type extension are evaluated, along with exec blocks
specified within the initial definition. First, the initial definition’s exec blocks (if any) are evaluated. Next,
the exec blocks (if any) contributed via type extension are evaluated, in the order that they are processed by
the PSS processing tool.

In Example 304, a type extension contributes an exec block to action Al.

action A {
int a;

exec pre solve {
a=1;
}
exec body {
print ("Hello from A %d", a);
}

action Al : A {
exec body {
super;
print ("Hello from Al %d4d", a);
}

extend action Al {
exec body {
print ("Hello from Al extension %d", a);

}

Example 304—DSL: Type extension contributes an exec block

When an instance of A1 is evaluated, the following is printed:

Hello from A 1
Hello from Al 1
Hello from Al extension 1

Copyright © 2021 Accellera. All rights reserved.
358

Portable Test and Stimulus Standard 2.0 — April 2021

In Example 305, two exec blocks are added to action A1 via extension.

action A {
int a;

exec pre solve {
a=1;
t
exec body {
print ("Hello from A %d", a);

action Al : A {
exec body {
super;
print ("Hello from Al %d4d", a);

extend action Al {
exec body {
print ("Hello from Al(l) extension %d", a);

}

extend action Al {
exec body {
print ("Hello from Al (2) extension %d", a);

}

Example 305—DSL: exec blocks added via extension

If the PSS processing tool processes the first extension followed by the second extension, then the following
is produced:

Hello from A 1
Hello from Al 1
Hello from Al (1) extension 1
Hello from Al (2) extension 1

If the PSS processing tool processes the second extension followed by the first extension, then the following
is produced:

Hello from A 1
Hello from Al 1
Hello from Al (2) extension 1
Hello from Al (1) extension 1

Copyright © 2021 Accellera. All rights reserved.
359

Portable Test and Stimulus Standard 2.0 — April 2021

22.2 Functions

Functions are a means to encapsulate behaviors used by actions and other entities to implement test
scenarios. Functions are called in procedural description contexts, and are akin to procedures in
conventional programming languages.

Functions can be declared in global or package scopes. Functions can also be declared in component
scopes, in which case each call is associated with a specific instance of that component type.

A function may be defined in one of three ways:
— Using native PSS procedural statements, possibly calling other functions (see 22.3)

— As bound to a procedural interface in a foreign programming language, such as a function in C/C++,
or a function/task in SystemVerilog (see 22.4)

— As atarget code template block (see 22.6)

The definition of a functions in one of these three ways may be coupled with the function’s initial
declaration. The definition may also be provided separately, in a different lexical scope. The intent and
semantics of a function are fixed by its declaration, but its implementation could vary between different
environments and contexts.

Functions may be called from procedural exec blocks, namely exec init_down, init_up, pre_solve,
post_solve, body, run_start, and run_end. Functions called from exec init_down, init_up, pre_solve, and
post_solve are evaluated on the solve platform, whereas functions called from exec body, run_start and
run_end are evaluated on the target platform.

A function declared in a component scope may be shadowed by a function declaration with the same name
in a derived component. The function declaration in the derived component must have the same return type
and arguments as that in the base component. The function in the base type may be called from within the
function in the derived type by calling “super.<function name>(...)".

When the shadowed element is a function, the function call is polymorphic, that is, the actual function called
depends on its context component. See 20.1 for details.

22.2.1 Function declarations

A function prototype is declared in a package or component scope within a PSS description. The function
prototype specifies the function name, return type, and function parameters. See Syntax 140 and Syntax 141.
Note that the syntax shown here is for the declaration of a function prototype only, where the definition is
provided separately. A function can also be declared and defined at once using a procedural statement block
or a target code template (see 22.3 and 22.6, respectively). The same syntax is used for specifying the
prototype in these cases also.

Copyright © 2021 Accellera. All rights reserved.
360

Portable Test and Stimulus Standard 2.0 — April 2021

22.2.1.1 DSL syntax

function_decl ::=[pure] function function prototype ;
function_prototype ::= function_return_type function_identifier function_parameter list prototype
function_return_type ::=
void
| data_type
function_parameter list prototype ::=
([function_parameter { , function_parameter }])
| ({ function parameter , } varargs parameter)
function_parameter ::=
[function_parameter dir] data_type identifier [= constant_expression |
| (type | ref type category | struct) identifier
function_parameter_dir ::=
input
| output
| inout
varargs parameter ::= (data_type | type | ref type category | struct) ... identifier
type category ::=
action
| component

| struct_kind

Syntax 140—DSL: Function declaration

The following also apply:

a)

b)

Functions declared in global or package scopes are considered static, and are called optionally using
package qualification with the scope operator (::).

Functions declared in component scopes are considered instance (non-static) functions, and are
called optionally using the dot operator (.) on a component instance expression.

22.2.1.2 C++ syntax

The corresponding C++ syntax for Syntax 140 is shown in Syntax 141.

Copyright © 2021 Accellera. All rights reserved.
361

Portable Test and Stimulus Standard 2.0 — April 2021

pss::function

Defined in pss/function.h (see C.30).

template <class T> class arg;

template <class T> class in_arg;

template <class T> class out arg;

template <class T> class inout arg;

template <class T> class result;

enum kind {solve, target};

template <typename T> class function;

template <typename R, typename... Args> class function<R(Args...)>; // 1
template <typename... Args> class function<result<void> (Args...)>; // 2

1) Declare a function object with result R

2) Declare a function object with no result (void)

Member functions

function (const scope &name, R result, Args... args) :constructor with result

function (const scope &name, Args... args) :constructor with void result

function (const scope &name, bool is pure, R result, Args... args) :constructor
with pure modifier and result

function (const scope &name, bool is pure, Args... args) :constructor with pure
modifier and void result

operator () (const T&... /*detail::AlgebExpr*/ params) . operator

Syntax 141—C++: Function declaration

NOTE—PSS/C++ functions declared outside a component are considered to be in the global PSS namespace even if
they are declared within a C++ namespace.

22.2.1.3 Examples
For an example of declaring a function, see 22.2.2, below.

22.2.2 Parameters and return types

A function shall explicitly specify a data type as its return type or use the keyword void to indicate that the
function does not return a value. Function return values shall be either plain-data types (scalars and
aggregates thereof) or reference types. Functions shall not return action types, component types, or flow/
resource object types without the ref modifier.

A function may specify any number of formal parameters, stating their types and names. Function
parameters shall be either plain-data types or reference types. Functions shall not have parameters of action
types, component types, or flow/resource object types without the ref modifier. Functions may also declare
generic parameters without stating their specific type, and may declare a variable number of parameters—
see 22.2.4. Note that the set of types allowed for imported foreign functions is restricted (see 22.4).

Parameter direction modifiers (input, output, or inout in DSL, and template classes in_arg, out_arg,
or inout_arg in C++) are optional in the function declaration. However, if they are specified in the
function declaration, such a function may only be imported (see 22.4). In the declaration of native functions
and target-template functions, direction modifiers shall not be used. In C++, parameter directions shall be
left unspecified by using the template class arg.

Copyright © 2021 Accellera. All rights reserved.
362

Portable Test and Stimulus Standard 2.0 — April 2021

NOTE—PSS/C++ function parameters and return types support int and bit types with width and range information,
but do not support associating range information with string or enum types. PSS/C++ function parameters of class
arg support array types with width or range specifications, while the in_arg/out_arg/inout_arg/result
classes do not.

Example 306 and Example 307 declare a function in a package scope. In this case, the function
compute value returns an int, accepts an input value (val), and returns an output value via the
out val parameter.

package generic functions {
function int compute value (
int val,
output int out val);

Example 306—DSL: Function declaration

namespace generic functions ({
function<result<int>(in_arg<int>, out arg<int>)> compute value {
"compute value", result<int>(), in arg <int>("val"),
out arg<int>("out wval")
i
}i

Example 307—C++: Function declaration

22.2.3 Default parameter values

Default parameter values serve as the actual values for the respective parameters if explicit actual
parameters are missing in the function call.

The following also apply:

a) A default parameter value shall be specified as a constant expression, and therefore can only be
specified for a parameter of a plain-data type.

b) In a function declaration, following a parameter with a specified default value, all subsequent
parameters must also have default values specified.

¢) A default parameter value is in effect for redeclarations (and overrides) of a function. A default
parameter value shall not be specified in the redeclaration of a function if already declared for the
same parameter in a previous declaration, even if the value is the same.

Example 308 demonstrates the declaration and use of a default parameter value.

function void foo(int x, int y = 100);

function void bar () {
foo(3,200); // the value 200 is used for parameter y
foo (3); // the value 100 is used for parameter y

Example 308—DSL: Default parameter value

NOTE—PSS/C++ function parameter default values of type int and bit may be specified using the in_arg class.
Parameters of other types, and parameters specified using arg and inout_arg may not be given default values.

Copyright © 2021 Accellera. All rights reserved.
363

Portable Test and Stimulus Standard 2.0 — April 2021

22.2 4 Generic and varargs parameters

Generic parameters and varargs parameters are means to declare functions that are generic or variadic with
respect to their parameters. Examples are functions that apply to all actions or objects as such, and functions
that involve string formatting.

Generic and varargs parameters are used for the declaration of functions whose definition is built into
implementations. In particular, they are used to declare functions included in the PSS core library (see
Clause 24). PSS does not provide a native mechanism to operate on an unspecified number of parameters or
on parameters with no declared type, nor does PSS define mapping of functions with generic/varargs
parameters to foreign languages.

The following also apply:

a) A generic parameter is declared either with the keyword type or with a fype category, rather than
with a specific type. A value of any type (if type was specified), or any type that belongs to the spec-
ified category (if a type category was specified), is accepted in the function call. In the case of the
struct category, the ref modifier shall not be used, but for the other categories (component, action,
one of the object kinds), the ref modifier shall be used. See more on the use of type categories in
12.3.2.

b) Default values may not be specified for generic parameters.

c¢) The varargs parameter (ellipsis notation — “. . .”) signifies that zero or more trailing values may be
passed as actual parameters in the function call. Note that a varargs parameter may only occur as the
last parameter in the parameter list.

d) In a function call, the expressions corresponding to a varargs parameter must all be of the declared
type if a type is specified, or belong to the same type category if one is specified. Note that in the
case of a type category, the types of the actual parameter expressions may vary, so long as they all
belong to the specified category. When a varags parameter is declared with the keyword type, actual
parameters types may vary with no restriction.

Example 309 demonstrates the declaration and use of a generic parameter.

function void foo (struct x);
struct my struct {};
struct your struct {};
function void bar () {

my struct sl;

your struct s2;

foo(sl);

foo(s2);

Example 309—DSL: Generic parameter

Copyright © 2021 Accellera. All rights reserved.
364

Portable Test and Stimulus Standard 2.0 — April 2021

Example 310 demonstrates the declaration and use of a varargs parameter.

function string format string(string format, type ... args);
function void bar () {

string name = "John";

int age = 55;

string result;

result = format string("name %s: age %d", name, age);

Example 310—DSL: Varargs parameter

22.2.5 Pure functions

Pure functions are functions for which the return value depends only on the values of their parameters, and
their evaluation has no side-effects. Declaring a function as pure may provide the PSS implementation with
opportunities for optimization. Note that a function declared as pure may lead to unexpected behavior if it
fails to obey these rules.

The following rules apply to pure functions, that is, functions declared with the pure modifier:
a) Only non-void functions with no output or inout parameters may be declared pure.

b) A pure function will be considered pure in derived types even if the pure modifier is not explicitly
specified in the derived type function declaration.

A non-pure function shall not be declared as pure in derived types.
22.2.5.1 Examples

Example 311 and Example 312 demonstrate declaration and use of pure functions.

pure function int factorial (int n);
action A {

rand int vals[10];

int factorial vals[10];

exec post solve {
foreach (vals[i]) {
factorial vals[i] = factorial(vals[i]);

Example 311—DSL: Pure function

Copyright © 2021 Accellera. All rights reserved.
365

Portable Test and Stimulus Standard 2.0 — April 2021

function<result<int> (arg<int>)>
factorial {"factorial", true, result<int>(), arg<int>("n")};

class A : public action {
rand attr vec<int> vals{"vals", 10};
attr vec<int> factorial vals{"factorial vals", 10};

exec e {exec::post solve, [&] () {
attr<int> i{"i"};
foreach (i, wvals,
[&] () { factorial vals[i] = factorial(vals[i]); }

)

b

Example 312—C++: Pure function

In the example above, the function factorial () is pure and therefore will not necessarily be re-
evaluated for each element in the array. If some elements in the array are equal, the PSS implementation
may choose to use the result of a previous evaluation, and not evaluate the function again.

22.2.6 Calling functions

Functions may be called directly from exec blocks or from other functions using procedural constructs (see
22.7). Recursive function calls are allowed.

Functions not returning a value (declared with veid return type) may only be called as standalone procedural
statements. Functions returning a value may be used as operands in expressions; the value of that operand is
the value returned by the function. The function can be used as a standalone statement and the return value
discarded by casting the function call to void:

(void) function call();

Calling a nonvoid function as if has no return value shall be legal, but it is recommended to explicitly
discard the return value by casting the function call to void, as shown above.

Example 313 and Example 314 demonstrate calling various functions. In this example, the
mem_segment s buffer object captures information about a memory buffer with a random size. The
specific address in an instance of the mem segment s object is computed using the alloc addr
function. alloc addr is called after the solver has selected random values for the rand fields
(specifically, size in this case) to select a specific address for the addr field.

Copyright © 2021 Accellera. All rights reserved.
366

Portable Test and Stimulus Standard 2.0 — April 2021

package external functions pkg {
function bit[31:0] alloc_addr(bit[31:0] size);

function void transfer mem(
bit[31:0] src, bit[31:0] dst, bit[31:0] size
)

buffer mem segment s {
rand bit[31:0] size;
bit[31:0] addr;
constraint size in [8..4096];
exec post solve {

addr = alloc_addr(size);

}

component mem xfer {
import external functions pkg::*;

action xfer a {

input mem segment s in buff;
output mem segment s out buff;
constraint in buff.size == out buff.size;

exec body {
transfer mem(in buff.addr, out buff.addr, in buff.size);

}

Example 313—DSL: Calling functions

Copyright © 2021 Accellera. All rights reserved.
367

Portable Test and Stimulus Standard 2.0 — April 2021

namespace external functions pkg {
function<result<bit>(in arg<bit>)> alloc_addr {
"alloc addr",
result<bit>(width(31,0)), in_arg<bit>("size", width(31,0))
b

function<result<void>(in arg<bit>, in arg<bit>, in arg<bit>)>
transfer mem {

"transfer mem",

in arg<bit>("src", width(31,0)),

in arg<bit>("dst", width(31,0)),

in arg<bit>("size",width(31,0))
}i

class mem segment s : public buffer ({
rand attr<bit> size { "size", width(31,0) };
attr<bit> addr { "addr", width(31,0) };

constraint ¢ { in (size, range (8, 4096)) };
b
type decl<mem segment s> mem segment s decl;

}r

class mem xfer : public component {
using mem segment s = external functions pkg::mem segment s;

class xfer a : public action {
input <mem segment s> in buff {"in buff"};
output <mem segment s> out buff {"out buff"};

constraint ¢ { in buff->size == out buff->size };

exec body { exec::body, external functions pkg::transfer mem
(in buff->addr, out buff->addr, in buff->size)
}i
}i
type decl<xfer a> xfer a decl;
}i

Example 314—C++: Calling functions

22.3 Native PSS functions

It is possible to specify the definition for native PSS functions using the procedural constructs described in
22.7.

If the function declaration is in a component, then the definition (if provided) shall be in the same
component type (either in its initial definition or in an extension) or in a derived component. If the
declaration is in a package (outside of any component), then the definition shall be in the same package.

Copyright © 2021 Accellera. All rights reserved.
368

Portable Test and Stimulus Standard 2.0 — April 2021

22.3.1 DSL syntax

procedural function ::= [platform_qualifier] [pure] function function prototype
{ { procedural stmt } }

platform_qualifier ::=
target
| solve
function_prototype ::= function_return_type function_identifier function parameter list prototype|
function_return_type ::=
void
| data_type
function_parameter list prototype ::=
([function_parameter { , function_parameter } |)
| ({ function parameter, } varargs parameter)
function_parameter ::=
[function_parameter dir] data_type identifier [= constant_expression]
| (type | ref type category | struct) identifier
function_parameter dir ::=
input
| output
| inout
varargs_parameter ::= (data_type | type | ref type category | struct) ... identifier
type category ::=
action

| component

| struct_kind

Syntax 142—DSL: Function definition

The optional platform_qualifier (either solve or target) specifies function availability. An unqualified
function is assumed to be available during all phases of test generation and execution.

For native PSS functions, function_parameter_dir shall be left unspecified for all parameters of the function,
both in the original function declaration (if provided) and in the native PSS function definition.

22.3.2 C++ syntax

The corresponding C++ syntax for Syntax 142 is shown in Syntax 143. A constructor of pss: : function
accepts an instance of std: : function as an argument. Typically, the user provides an in-place lambda
as the argument.

NOTE—PSS/C++ version only allows definition of native PSS target functions, not of solve functions. PSS/C++ does
allow declaration of function prototypes for both target and solve functions.

Copyright © 2021 Accellera. All rights reserved.
369

Portable Test and Stimulus Standard 2.0 — April 2021

pss::function

Defined in pss/function.h (see C.30).
template<class T> class arg;

template<typename T> class function;
template<typename R, typename... Args> class function<R(Args...)>;// 1
template<typename... Args> class function<result<void>(Args...)>; // 2

1) Declare a function object with result R

2) Declare a function object with no result (void)

Member functions

function (const scope &name, R result, Args... args, std::function
<R(Args...)> ast builder) :declare function specified procedurally (with result)

function (const scope &name, Args... args, std::function
<void(Args...)> ast _builder) :declare function specified procedurally (with no result)

function (const scope &name, bool is pure, R result, Args... args,
std::function<R(Args...)> ast _builder) :declare function specified procedurally (with pure
modifier and result)

function (const scope &name, bool is pure, Args... args,
std::function<void(Args...)> ast _builder) :declare function specified procedurally (with
pure modifier and no result)

operator () (const T&... /*detail::AlgebExpr*/ params) :operator ()

Syntax 143—C++: Function definition

As the ast_builder function executes, the PSS constructs inside the function object progressively
create the AST (abstract syntax tree). Once the execution is complete, the AST is fully formed. The function
ast_builder may be invoked zero, one, or multiple times. If it is invoked multiple times, it shall create

the same AST each time.

22.3.3 Parameter passing semantics
Parameter direction shall be unspecified in the function prototype for native PSS functions. In the case of
DSL, this implies that the parameter direction (input, output, or inout) shall not be used. In the case of PSS/

C++, the function parameters shall be specified using template class arg<T>.

In the implementation of these functions, the following apply:

— Parameters of scalar data types are passed by value. Any changes to these parameters in the callee do
not update the values in the caller.

— Parameters of aggregate data types are passed as a handle to the instance in the caller. Updates to
these parameters in the callee will modify the instances in the caller. Note that as variables, parame-
ters of aggregate data types have value semantics in assignment and equality expressions (see 9.3
and 9.5.3).

— Parameters of reference data types are passed as reference assignments. The parameter points to (is
an alias to) the entity referred to in the actual parameter expression. Note that as variables, parame-
ters of reference types have reference semantics in assignment and equality expressions (see 9.3 and
9.5.3), and may evaluate to null.

Example 315 shows the parameter passing semantics.

Copyright © 2021 Accellera. All rights reserved.
370

Portable Test and Stimulus Standard 2.0 — April 2021

package generic_functions {
struct params_s {
int x;

}z

// Prototypes

function void set valO(params s p, int a);

function void set vall (params s p dst, params s p_src);
function params s zero attributes();

// Definitions
function void set valO(params_ s p, int a)
{
p.x a;
a

=]

}
function void set vall (params s p dst, params_ s p src)
{
p dst.x = p src.x;
}
function params s zero_ attributes()
{
params_s s;
s.x = 0;
return s;

component A {
params_s p;
int a;

exec init up {
a = 10;
p.x = 20;
set valO(p, a);
// p.x is set to 10 at this point and a is unchanged

set vall(p, zero_ attributes());
// p.x 1s set to 0 at this point

Example 315—DSL: Parameter passing semantics

22.4 Foreign procedural interface

Function declarations in PSS may expose, and ultimately be bound to, foreign language APIs (functions,
tasks, procedures, etc.) available on the target platform and/or on the solve platform. A function that was
previously declared in the PSS description can be designated as imported. Calling an imported function from
a PSS procedural context invokes the respective API in the foreign language. Parameters and result passing
are subject to the type mapping defined for that language.

22.4.1 Definition using imported functions

Additional qualifiers are added to imported functions to provide more information to the tool about the way
the function is implemented and/or in what phases of the test-creation process the function is available.

Copyright © 2021 Accellera. All rights reserved.
371

Portable Test and Stimulus Standard 2.0 — April 2021

Imported function qualifiers are specified separately from the function declaration for modularity (see
Syntax 144 and Syntax 145). In typical use, qualifiers are specified in an environment-specific package

(e.g., a UVM environment-specific package or C-test-specific package).

22.4.1.1 DSL syntax

import_function ::=
import [platform_qualifier] [language identifier] function type identifier ;
| import [platform_qualifier | [language identifier] function function_prototype ;
platform_qualifier ::=
target

| solve

Syntax 144—DSL: Imported function qualifiers

The following also apply:

a) Return values and parameter values of imported functions are restricted to the following types:

1) bitor int, provided width is no more than 64 bits

2) bool

3) enum

4) string

5) chandle

6) struct

7) array whose element type is one of these listed types, including a sub-array

See Annex E for type-mapping rules to C, C++, and SystemVerilog.

b) Parameter direction modifiers may be used in the function declaration or in the import declaration
to specify the passing semantics between PSS and the foreign language:

1) If the value of an input parameter is modified by the foreign language implementation, the
updated value is not reflected back to the PSS model.

2) An output parameter sets the value of a PSS model variable. The foreign language implemen-
tation shall consider the value of an output parameter to be unknown on entry; it shall specify a
value for an output parameter.

3) An inout parameter takes an initial value from a variable in the PSS model and reflects the
value specified by the foreign language implementation back to the PSS model.

c) Inthe absence of an explicit direction modifier, parameters default to input.
In addition, the following apply when the second form of import function is used (with the function
prototype specified):
a) If the direction for a parameter is left unspecified in the import declaration, it defaults to input.
b) The prototype specified in the import declaration must match the prototype specified in the func-
tion declaration in the following way:

1) The number of parameters must be identical.

2) The parameter names and types must be identical.

3) The return types must be identical.

c) If the function declaration specifies a parameter direction explicitly, the direction specified in the

import declaration (either explicitly or by default) must match the function declaration.

Copyright © 2021 Accellera. All rights reserved.
372

Portable Test and Stimulus Standard 2.0 — April 2021

d) If in the function declaration, the direction was unspecified for any parameter, the prototype speci-
fied in the import declaration can provide the direction of the parameter as input, output or inout.

22.4.1.2 C++ syntax

The corresponding C++ syntax for Syntax 144 is shown in Syntax 145.

pss::import_func
Defined in pss/function.h (see C.30).

enum kind {solve, target};
template <typename T> class import func;

template <typename R, typename... Args>
class import func<function<R(Args...)>>; // 1
template <typename R, typename... Args>
class import func<function<result<void>(Args...)>>; // 2

1) Import function availability with result R

2) Import function availability with no result (void)
Member functions

import func (const scope &name, const kind a kind) :constructor

import func (const scope &name, const std::string &language) :declare import
function language

import func (const scope &name, const kind a kind, const std::string
&language) :import function language and availability

operator () (const T&... /*detail::AlgebExpr*/ params) :operator

Syntax 145—C++: Imported function qualifiers

22.4.1.3 Specifying function availability

In some environments, test generation and execution are separate activities. In those environments, some
functions may only be available during test generation, on the solve platform, while others are only available
during test execution, on the target platform. For example, reference model functions may only be available
during test generation while the utility functions that program hardware devices may only be available
during test execution.

An unqualified imported function is assumed to be available during all phases of test generation and
execution. Qualifiers are specified to restrict a function’s availability. Functions restricted to the solve
platform shall not be called directly or indirectly from farget execs, namely body, run_start, and run_end.
Similarly, functions restricted to the target platform shall not be called from solve execs, namely init_down,
init_up, pre_solve, and post_solve.

Example 316 and Example 317 specify function availability. Two imported functions are declared in the
external functions pkg package. The alloc addr function allocates a block of memory, while
the transfer mem function causes data to be transferred. Both of these functions are present in all phases
of test execution in a system where solving is done on-the-fly as the test executes.

In a system where a pre-generated test is to be compiled and run on an embedded processor, memory
allocation may be pre-computed. Data transfer shall be performed when the test executes. The
pregen tests_ pkg package specifies these restrictions: alloc_addr is only available during the

Copyright © 2021 Accellera. All rights reserved.
373

Portable Test and Stimulus Standard 2.0 — April 2021

solving phase of stimulus generation, while transfer mem is only available during the execution phase
of stimulus generation. PSS processing uses this specification to ensure that the way imported functions are
used aligns with the restrictions of the target environment. Notice the use of the decltype specifier in
Example 317 in the import func declarations of alloc addr and transfer mem in the

pregen tests pkg package.

package external functions pkg {
function bit[31:0] alloc addr(bit[31:0] size);
function void transfer mem(
bit[31:0] src, bit[31:0] dst, bit[31:0] size
)i
package pregen tests pkg {
import solve function external functions pkg::alloc addr;

import target function external functions pkg::transfer mem;

Example 316—DSL: Function availability

namespace external functions pkg {
function<result<bit>(in arg<bit>)>
alloc_addr { "alloc addr",
result<bit> (width (31,0)),
in arg<bit>("size", width(31,0))
}:
function<result<void>(in arg<bit>, in arg<bit>, in arg<bit>)>
transfer mem {"transfer mem",
in arg<bit>("src", width(31,0)),
in _arg<bit>("dst", width(31,0)),
in arg<bit>("size", width(31,0))
}:
}i

namespace pregen tests pkg {
import func<decltype (external functions pkg::alloc_addr)>
alloc addr {"external functions pkg::alloc_addr" , solve};
import func<decltype (external functions pkg::transfer mem)>
transfer mem {"external functions pkg::transfer mem", target};

}i

Example 317—C++: Function availability

When C++ based PSS input is used, if the solve-time function is also implemented in C++, it is not
necessary to explicitly import the function before it can be used in pre solve and post solve. For an

example of calling C++ functions natively, see Example 344.

Copyright © 2021 Accellera. All rights reserved.
374

Portable Test and Stimulus Standard 2.0 — April 2021

Example 318 and Example 319 demonstrate an activity with reactive control flow based on values returned
from a target function called in an exec body block.

component my ip c {
function int sample DUT state();
import target C function sample DUT state;
// specify mapping to target C function by that same name

action check state {
int curr val;
exec body {
curr val = comp.sample DUT state();
// value only known during execution on target platform
}
bi

action A { };
action B { };

action my test {
check state cs;
activity {
repeat {
cs;
if (cs.curr val % 2 == 0) {
do A;
} else {
do B;
}

} while (cs.curr val < 10);

Example 318—DSL: Reactive control flow

Copyright © 2021 Accellera. All rights reserved.
375

Portable Test and Stimulus Standard 2.0 — April 2021

class my ip ¢ : public component {
function<result<int>()> sample DUT state
{"sample DUT state",result<int>()};
import func<function<result<int>()>> impl decl
{"sample DUT state", target, "C"};

class check state : public action {
attr<int> curr val {"curr val"};

exec body { exec::body,
curr val = comp<my ip c>()->sample DUT state ()
}i
}i
type decl<check state> check state decl;

class A : public action {...};
class B : public action {...};

class my test : public action {
action handle<check state> cs {"cs"};

activity actv {
repeat while {
sequence {
cs,
if then else { cond (cs->curr val % 2 == 0),
action handle<A>(),
action handle ()

}
, cs->curr_val < 10
}
i
i
type decl<my test> my test decl;
i

Example 319—C++: Reactive control flow

22.4.1.4 Specifying an implementation language

The implementation language for an imported function can be specified implicitly or explicitly. In many
cases, the implementation language need not be explicitly specified because the PSS processing tool can use
sensible defaults (e.g., all imported functions are implemented in C++). Explicitly specifying the
implementation language using a separate statement allows different imported functions to be implemented
in different languages, however (e.g., reference model functions are implemented in C++, while functions to
drive stimulus are implemented in SystemVerilog).

Copyright © 2021 Accellera. All rights reserved.
376

Portable Test and Stimulus Standard 2.0 — April 2021

Example 320 and Example 321 show explicit specification of the foreign language in which the imported
function is implemented. In this case, the function is implemented in C. Notice that only the name of the
imported function is specified and not the full function prototype.

package known c functions {
import C function generic functions::compute expected value;

}

Example 320—DSL: Explicit specification of the implementation language

namespace known c functions ({
import func<function<result<void>()>> compute expected value {
"generic functions::compute expected value", "C"
b
b

Example 321—C++: Explicit specification of the implementation language

22.4.2 Imported classes

In addition to interfacing with external foreign language functions, the PSS description can interface with
foreign language classes. See also Syntax 146 and Syntax 147.

22.4.2.1 DSL syntax

import_class_decl ::= import class import class _identifier [import_class_extends |
{ { import_class_function decl } }

import_class_extends ::=: type_identifier { , type identifier }
import_class_function_decl ::= function_prototype ;

Syntax 146—DSL: Import class declaration

The following also apply:

a) Imported class functions support the same return and parameter types as imported functions. import
class declarations also support capturing the class hierarchy of the foreign language classes.

b) Fields of import class type can be instantiated in package and component scopes. An import class
field in a package scope is a global instance. A unique instance of an import class field in a compo-
nent exists for each component instance.

¢) Imported class functions are called from an exec block just as imported functions are.
22.4.2.2 C++ syntax

The corresponding C++ syntax for Syntax 146 is shown in Syntax 147.

Copyright © 2021 Accellera. All rights reserved.
377

Portable Test and Stimulus Standard 2.0 — April 2021

pss::import_class

Defined in pss/import_class.h (see C.32).
class import class;

Declare an import class.

Member functions

import class (const scope &name) : constructor

Syntax 147—C++: Import class declaration

22.4.2.3 Examples

Example 322 and Example 323 declare two imported classes. import class base declares a function
base function, while import class ext extends from import class base and adds a function named
ext function.

import class base {
void base function();

}

import class ext : base {
void ext function();

}

Example 322—DSL: Import class

class base : public import class {

function<result<void>()> base function {"base function"};
}i
type decl<base> base decl;

class ext : public base {

function<result<void>()> ext function {"ext function"};
i
type decl<ext> ext decl;

Example 323—C++: Import class

22.5 Target-template implementation of exec blocks

Implementation of execs may be specified using a target template—a string literal containing code in a
specific foreign language, optionally embedding references to fields in the PSS description. Target-template
implementation is restricted to target exec kinds (body, run_start, run_end, header, and declaration). In
addition, target templates can be used to generate other text files using exec file. Target-template
implementations may not be used for so/ve execs (init_down, init_up, pre_solve, and post_solve).

Target-template execs are inserted by the PSS tool verbatim into the generated test code, with embedded

expressions substituted with their actual values. Multiple target-template exec blocks of the same kind are

Copyright © 2021 Accellera. All rights reserved.
378

Portable Test and Stimulus Standard 2.0 — April 2021

allowed for a given action, flow/resource object, or struct. They are (logically) concatenated in the target
file, as if they were all concatenated in the PSS source.

22.5.1 Target language

A language identifier serves to specify the intended target programming language of the code block.
Clearly, a tool supporting PSS must be aware of the target language to implement the runtime semantics.
PSS does not enforce any specific target language support, but recommends implementations reserve the
identifiers C, CPP, and SV to denote the languages C, C++, and SystemVerilog respectively. Other target
languages may be supported by tools, given that the abstract runtime semantics are kept. PSS does not define
any specific behavior if an unrecognized language identifier is encountered.

Each target-template exec block is restricted to one target language in the context of a specific generated
test. However, the same action may have target-template exec blocks in different languages under different
packages, given that these packages are not used for the same test.

22.5.2 exec file

Not all the artifacts needed for the implementation of tests are coded in a programming language that tools
are expected to support as such. Tests may require scripts, command files, make files, data files, and files in
other formats. The exec file construct (see 22.1) specifies text to be generated out to a given file. exec file
constructs of different actions/objects with the same target are concatenated in the target file in their
respective scenario flow order.

22.5.3 Referencing PSS fields in target-template exec blocks

Implementing test intent requires using data from the PSS model in the code created from target-template
exec blocks. PSS variables are referenced using mustache notation: { {expression}}. A reference is to
an expression involving variables declared in the scope in which the exec block is declared. Only scalar
variables (except chandle) can be referenced in a target-template exec block.

22.5.3.1 Examples

Example 324 shows referencing PSS variables inside a target-template exec block using mustache notation.

component top {
struct S {
rand int b;
}
action A {
rand int a;
rand S sl;
exec body C = """
printf ("a={{a}} sl.b={{sl.b}} a+b={{a+sl.b}}\n");

wwn o,
’

Example 324—DSL: Referencing PSS variables using mustache notation

Copyright © 2021 Accellera. All rights reserved.
379

Portable Test and Stimulus Standard 2.0 — April 2021

A variable reference can be used in any position in the generated code. Example 325 shows a variable
reference used to select the function being called.

component top {

action A {
rand bit[1:0] func_ id;
rand bit[3:0] a;
exec body C = """
func_{{func_id}} ({{a}});

www .,
’

Example 325—DSL: Variable reference used to select the function

One implication of this is that a mustache reference cannot be used to assign a value to a PSS variable.

Example 325 also declares a random func_id variable that identifies a C function to call. When a PSS tool
processes this description, the following output shall result, assuming func_id==1 and a==4:

func 1(4);

Example 326 shows how a procedural pre_solve exec block is used along with a target-template declaration

exec block to allow programmatic declaration of a target variable declaration.

enum obj type e {my int8,my intlé,my int32,my inté4};
function string get unique obj name();
import solve function get unique obj name;

buffer mem buff s ({
rand obj type e obj type;
string obj name;

exec post solve {
obj name = get unique obj name();

}

// declare an object in global space
exec declaration C = """
static {{obj type}} {{obj name}};

wuwn o,
’

b

Example 326—DSL: Allowing programmatic declaration of a target variable declaration

Assume that the solver selects my intl6 as the value of the obj type field and that the
get unique obj name () function returns field 0. In this case, the PSS processing tool shall
generate the following content in the declaration section:

static my intlé field O;

Copyright © 2021 Accellera. All rights reserved.
380

Portable Test and Stimulus Standard 2.0 — April 2021

22.5.3.2 Formatting

When a variable reference is converted to a string, the result is formatted as follows:

— int signed decimal (%d)
— bit unsigned decimal (%ud)
— bool "true" | "false"

— string string (%s)
— chandle pointer (3p)

22.6 Target-template implementation for functions

When integrating with languages that do not have the concept of a “function,” such as assembly language,
the implementation for functions can be provided by target-template code strings.

The target-template form of functions (see Syntax 148 and Syntax 149) allows interactions with a foreign
language that do not involve a procedural interface. Examples are injecting assembly code or global
variables into generated tests. The target-template forms of functions are always target implementations.
Variable references may only be used in expression positions. Function return values shall not be provided,
i.e., only functions that return void are supported. Target-template functions declared under components are
instance (non-static) functions (see 22.2.1.1). PSS expressions embedded in the target code (using mustache
notation) can make reference to the instance attributes, optionally using this.

See also 22.5.3.

22.6.1 DSL syntax

target template function ::= target language identifier
function function_prototype = string_literal ;

Syntax 148—DSL: Target-template function implementation

The following also apply:

a) If the direction for a parameter is left unspecified in the target template declaration, it defaults to
input.

b) The prototype specified in the target template declaration must match the prototype specified in the
function declaration in the following way:
1) The number of parameters must be identical.
2) The parameter names and types must be identical.
3) The return types must be identical.

c) If the function declaration specifies a parameter direction explicitly, the direction specified in the
target template declaration (either explicitly or by default) must match the function declaration.

d) If in the function declaration, the direction was unspecified for any parameter, the prototype speci-
fied in the target template declaration can provide the direction of the parameter as input, output or
inout.

Copyright © 2021 Accellera. All rights reserved.
381

Portable Test and Stimulus Standard 2.0 — April 2021

22.6.2 C++ syntax

The corresponding C++ syntax for Syntax 148 is shown in Syntax 149.

pss::function

Defined in pss/function.h (see C.30).

template <typename T> class function;
template <typename R, typename... Args> class function<R(Args...)>;// 1
template <typename... Args> class function<result<void> (Args...)>; // 2

1) Declare a target template with result R

2) Declare a target template with no result (void)
Member functions

function (const scope &name, const std::string &language, R result, Args...

args, const std::string &target template) :declare target-template function with result
function (const scope &name, const std::string &language, Args... args,
const std::string &target template) :declare target-template function without result
operator () (const T&... /*detail::AlgebExpr*/ params) :operator

Syntax 149—C++: Target-template function implementation

22.6.3 Examples

Example 327 and Example 328 provide an assembly-language target-template code block implementation
for the do_stw function. Function parameters are referenced using mustache notation ({ {variable}}).

package thread ops pkg {

function void do stw(bit[31:0] val, bit[31:0] vaddr);
}

package thread ops asm pkg {
target ASM function void do stw(bit[31:0] val, bit[31:0] vaddr) = """
loadi RA {{val}}
store RA {{vaddr}}

wwn o,
’

Example 327—DSL: Target-template function implementation

Copyright © 2021 Accellera. All rights reserved.
382

Portable Test and Stimulus Standard 2.0 — April 2021

namespace thread ops pkg {
function<result<void>(in_arg<bit>, in arg<bit>)> do stw { "do_stw",
in arg<bit>("val", width(31,0)),
in arg<bit>("vaddr", width(31,0)) };
}i

namespace thread ops asm pkg {
function<result<void>(in_ arg<bit>, in arg<bit>)> do stw { "do_ stw",
"ASM",
in arg<bit>("val", width(31,0)),
in arg<bit>("vaddr", width(31,0)),
R"(
loadi RA {{val}}
store RA {{vaddr}}

Example 328—C++: Target-template function implementation

22.7 Procedural constructs

This section specifies the procedural control flow constructs. When relevant, these constructs have the same
syntax and execution semantics as the corresponding activity control flow statements (see 13.4).

The PSS/C++ control flow constructs are based on the same classes as used for activity control flow
constructs; the constructors described below are overloads on the constructors specified under 13.4. PSS
function definitions and exec definitions shall only use the constructor forms specified in this section; it shall
be an error to use activity control flow constructs (except in cases explicitly specified in this chapter).
22.7.1 Scoped blocks

A scoped block creates a new unnamed nested scope, similar to C-style blocks.

22.7.1.1 DSL syntax

procedural stmt ::=
procedural sequence block stmt

procedural sequence block stmt ::=[sequence] { { procedural stmt } }

Syntax 150—DSL: Procedural block statement

The sequence keyword before the block statement is optional, and is provided to let users state explicitly
that the statements are executed in sequence.

Typically, blocks are used to group multiple statements that are part of a control flow statement (such as
repeat, if-else, etc.). It is also valid to have a stand-alone block that is not part of a control flow statement, in
which case the following equivalencies apply:

— A stand-alone block that does not create new variables (and hence does not destroy any variables
when the scope ends) is equivalent (in so far as to the AST constructed) to the case where the con-
tents of the code block are merged with the enclosing parent block. For example:

Copyright © 2021 Accellera. All rights reserved.
383

Portable Test and Stimulus Standard 2.0 — April 2021

is equivalent to
{
int a;
int b;
b = a;
}
If the start of an enclosing block coincides with the start of the stand-alone nested block (i.e., with no
statements in between) and similarly the end of that enclosing block coincides with the end of the
stand-alone nested block, it is then equivalent to the case where there is just a single code-block with
the contents of the nested block. For example:

{

int a;
int b;
//

}
is equivalent to
{
int a;
int b;
//
}

22.7.1.2 C++ syntax

There is no special syntax element for stand-alone blocks in C++; the native C++ blocks (in braces) are used.
The PSS/C++ implementation must correctly infer the start/end of blocks. An implementation may use the
order in which variables are constructed/destructed to infer nested scope blocks.

attr<int> a("a"):;
attr<int> b ("b");

a = b;
{

attr<int> c("c");
c = a;

Example 329—C++: Procedural block statement

For control flow statements that accept a block as an argument, the following options are possible:

An in-place lambda

— A sequence construct

Copyright © 2021 Accellera. All rights reserved.
384

Portable Test and Stimulus Standard 2.0 — April 2021

For example, the conditional 1£ _then statement may be specified as
if then(cond(a > b),

[61() { ¢ = a; d b; }
)
or
if then(cond(a > b),
sequence { ¢ = a, d =Db }

)

The in-place lambda form is more general and also allows the user to declare variables (22.7.2). C++ user
code can also be invoked by the PSS implementation during the solve phase.

Example:
if then(cond(a > b),
[&] () { attr<int> x; x = a; a = b; b = x; }
)

22.7.2 Variable declarations
Variables may be declared with the same notation used in other declarative constructs (e.g., action). The
declaration may be placed at any point in a scope (i.e., C++ style) and does not necessarily have to be

declared at the beginning of a scope. However, the declaration shall precede any reference to the variable.

All data types listed in Clause 8 may be used for variable types. It shall be an error to instantiate rand
variables in a procedural context.

22.7.2.1 DSL syntax

procedural stmt ::=
procedural sequence block stmt
| procedural data declaration

procedural data_declaration ::= data_type procedural data_instantiation
{, procedural data_instantiation } ;

procedural data_instantiation ::= identifier [array dim] [= expression |

Syntax 151—DSL: Procedural variable declaration

22.7.2.2 C++ syntax

C++ uses the constructs described in Clause 8 for declaring variables (attr<. . .>, etc.). Additionally, in
procedural contexts, the constructors in Syntax 152 are also allowed, for initialization of scalar variables to a
non-constant value.

Copyright © 2021 Accellera. All rights reserved.
385

Portable Test and Stimulus Standard 2.0 — April 2021

pss::attr

Defined in pss/attr.h (see C.5).
template <class T> class attr;

Declare a scalar variable.

Member functions

attr(const scope& s, const detail::AlgebExpr& init val) :constructor, with non-constan
initial value (T = int, bit, string, or bool)

attr (const scope& s, const widthé& a width, const detail::AlgebExpré& init val)
: constructor, with width and non-constant initial value (T = int or bit only)

attr (const scopeé& s, const range& a range, const detail::AlgebExpré& init val)
: constructor, with range and non-constant initial value (T = int, bit, or string)

attr (const scope& s, const width& a width, const range& a_ range,
const detail::AlgebExpré& init wval) :constructor, with width, range and non-constant initial
value (T = int or bit only)

Syntax 152—C++: Initialization of variables with non-constant values

NOTE—The variables need to be destructed in the reverse order of construction. This is automatically achieved if all
variables are on the stack. Otherwise, if they are allocated on the heap, the user must ensure correct order of destruction.

22.7.3 Assignments
Assignments to variables in the scope may be made.

22.7.3.1 DSL syntax

procedural stmt ::=
procedural sequence block stmt
| procedural data declaration
| procedural assignment_stmt

procedural assignment_stmt ::= ref path assign_op expression ;

Syntax 153—DSL: Procedural assignment statement

The following rules apply to assignments in native PSS functions and execs:

a) A plain-data variable declared within a function/exec scope may be assigned in the scope where it is
visible with no restriction.

b) A native PSS function definition may set data attributes of component instances through
component references passed as parameters. Instance functions may similarly set data attributes of
their context component directly. Since component attributes can only be set during the
initialization phase, a function that sets such data attributes shall be called only from within exec
init_down or init_up.

¢) An exec init_down or init_up block may set the data attributes of the component instance directly
in the body of the exec.

Copyright © 2021 Accellera. All rights reserved.
386

Portable Test and Stimulus Standard 2.0 — April 2021

d) Data attributes of a struct instance may be set using the handle passed as a parameter. Similarly,
data attributes of actions and flow/resource objects may be set using the reference passed as a
parameter. A function that sets such data attributes may be invoked in init, solve or body execs.

e) A struct instance may be assigned to another struct instance of the same type, which results in a
deep-copy operation of the data attributes. That is, this single assignment is equivalent to
individually setting data attributes of the left-side instance to the corresponding right-side instance,
for all the data attributes directly present in that type or in a contained struct type.

22.7.4 Void function calls

Functions not returning a value (declared with veid return type) may only be called as standalone procedural
statements. Functions returning a value may be used as a standalone statement and the return value
discarded by casting the function call to veid:

(void) function call();

Calling a nonvoid function as if has no return value shall be legal, but it is recommended to explicitly
discard the return value by casting the function call to void, as shown above.

22.7.4.1 DSL syntax

procedural stmt ::=
procedural sequence block stmt
| procedural data declaration
| procedural assignment stmt
| procedural void function_call_stmt
...
procedural void function_call_stmt ::=[(void)] function_call ;
Syntax 154—DSL: Void function call

22.7.5 return statement

PSS functions shall return a value to the caller using the return statement. In PSS functions that do not
return a value, the return statement without an argument shall be used.

The return statement without an argument can also be used in execs. The return signifies end of
execution—no further statements in the exec are executed.

Copyright © 2021 Accellera. All rights reserved.
387

Portable Test and Stimulus Standard 2.0 — April 2021

22.7.5.1 DSL syntax

procedural stmt ::=
procedural sequence block stmt
| procedural data_declaration
| procedural assignment_stmt
| procedural void function_call_stmt
| procedural return_stmt

procedural return_stmt ::= return [expression] ;

Syntax 155—DSL: Procedural return statement

22.7.5.2 C++ syntax

The corresponding C++ syntax for Syntax 155 is shown in Syntax 156.

pss::pss_return

Defined in pss/ctrl_flow.h (see C.21).
class pss_return;

Declare return procedural statement.

[Member functions

pss_return (void): constructor - with no parameters
pss_return (const detail::AlgebExpré& expr): constructor - with return argument

Syntax 156—C++: Procedural return statement

22.7.5.3 Examples

target function int add(int a, int b) {
return (a+b);

}

Example 330—DSL: Procedural return statement

function<result<int> (arg<int>, arg<int>)> add { "add",
result<int>(), arg<int>("a"), arg<int>("b"), [&] (arg<int> a, arg<int> b)
pss_return {a+b};

}

}i

{

Example 331—C++: Procedural return statement

Copyright © 2021 Accellera. All rights reserved.
388

Portable Test and Stimulus Standard 2.0 — April 2021

22.7.6 repeat (count) statement

The procedural repeat statement allows the specification of a loop consisting of one or more procedural
statements. This section describes the count-expression variant (see Syntax 157 and Syntax 158) and 22.7.7
describes the while-expression variants.

22.7.6.1 DSL syntax

procedural stmt ::=
procedural sequence block stmt
| procedural data declaration
| procedural assignment stmt
| procedural void function call stmt
| procedural return_stmt
| procedural repeat stmt
[...
procedural repeat stmt ::=

repeat ([index identifier :] expression) procedural stmt

Syntax 157—DSL: Procedural repeat-count statement

The following also apply:
a) expression shall be a non-negative numeric expression (int or bit).
b) Intuitively, the procedural stmt is iterated the number of times specified in the expression. An
optional index-variable identifier can be specified that ranges between O and one less than the itera-
tion count. If the expression evaluates to 0, the procedural _stmt is not evaluated at all.

22.7.6.2 C++ syntax

The corresponding C++ syntax for Syntax 157 is shown in Syntax 158.

Copyright © 2021 Accellera. All rights reserved.
389

Portable Test and Stimulus Standard 2.0 — April 2021

pss::repeat

Defined in pss/ctrl_flow.h (see C.21).
class repeat;

Declare a repeat statement.

Member functions

repeat (const detail::AlgebExpr& count, std::function<void(void)>
loop stmts) :declare a procedural repeat (with count) statement using lambda

repeat (const detail::AlgebExpr& count, detail::Stmt& /* sequence& */
loop_ stmts) :declare a procedural repeat (with count) statement using sequence construct

repeat (const attr<int>& iter, const detail::AlgebExpré& count, std::function
<void(void)> loop_ stmts) :declare a procedural repeat (with count) statement with iterator using
lambda

repeat (const attr<int>& iter, const detail::AlgebExpré& count, detail::Stmté&
/* sequence& */ loop stmts) :declare a procedural repeat (with count) statement with iterator
using sequence construct

Syntax 158—C++: Procedural repeat-count statement

22.7.6.3 Examples

target function int sum(int a, int b) {
int res;

res = 0;
repeat (b) {

res = res + ay

return res;

Example 332—DSL: Procedural repeat-count statement

function<result<int>(arg<int>, arg<int>)> sum {"sum",
result<int>(), arg<int>("a"), arg<int>("b"), [&] (arg<int> a, arg<int> b) {
attr<int> res("res");

res = 0;
repeat (b,
[&]1() { res = res + a; }

)

pss_return {res};

Example 333—C++: Procedural repeat-count statement

Copyright © 2021 Accellera. All rights reserved.
390

Portable Test and Stimulus Standard 2.0 — April 2021

22.7.7 repeat-while statement

The procedural repeat statement allows the specification of a loop consisting of one or more procedural
statements. This section describes the while-expression variants (see Syntax 159 and Syntax 160).

22.7.7.1 DSL syntax

procedural stmt ::=
procedural sequence block stmt
| procedural data declaration
| procedural assignment stmt
| procedural void function call stmt
| procedural return stmt
| procedural repeat stmt

procedural repeat stmt ::=

| repeat procedural stmt while (expression) ;
| while (expression) procedural stmt

Syntax 159—DSL: Procedural repeat-while statement

The following also apply:
a) expression shall be of type bool.

b) Intuitively, the procedural stmt is iterated so long as the expression condition is true, as sampled
before the procedural stmt (in the while variant) or after (in the repeat-while variant).

Copyright © 2021 Accellera. All rights reserved.
391

Portable Test and Stimulus Standard 2.0 — April 2021

22.7.7.2 C++ syntax

The corresponding C++ syntax for Syntax 159 is shown in Syntax 160.

pss::repeat_while

Defined in pss/ctrl_flow.h (see C.21).
class repeat while;

Declare a procedural repeat-while statement.

Member functions

repeat while (std::function<void(void)> loop_ stmts, const cond&
a_cond) :declare a procedural repeat-while statement using lambda

repeat while (const detail::Stmté& /*sequence&*/ loop stmts, const condé
a_cond) :declare a procedural repeat-while statement using sequence construct

pss::while_do

Defined in pss/ctrl_flow.h (see C.21).
class while do;

Declare a procedural while-do statement.

Member functions

while do(const cond& a cond, std::function<void(void)> loop stmts)
declare a procedural while-do statement using lambda

while do(const cond& a cond, const detail::Stmt& /*sequence&*/ loop stmts)
declare a procedural while-do statement using sequence construct

Syntax 160—C++: Procedural repeat-while statement

22.7.7.3 Examples

target function bool get parity(int n) {
bool parity;

parity = false;

while (n !'= 0) {
parity = !parity;
n=mné& (n-1);

return parity;

Example 334—DSL: Procedural while statement

Copyright © 2021 Accellera. All rights reserved.
392

Portable Test and Stimulus Standard 2.0 — April 2021

function<result<bool>(arg<int>)> get parity {"get parity",
result<bool> (), arg<int>("n"), [&] (arg<int> n) {

attr<bool> parity("parity");
while do((n != 0),
(&1 0 |
parity = !parity;
n=ndés& (n-1);

);

pss_return {parity};

Example 335—C++: Procedural while statement

22.7.8 foreach statement

The procedural foreach statement allows the specification of a loop that iterates over the elements of a
collection (see Syntax 161 and Syntax 162).

22.7.8.1 DSL syntax

procedural stmt ::=
procedural sequence block stmt
| procedural data declaration
| procedural assignment stmt
| procedural void function call stmt
| procedural return_stmt
| procedural repeat stmt
| procedural foreach stmt

procedural foreach stmt ::=

foreach ([iterator_identifier :] expression [[index_identifier |]) procedural stmt
Syntax 161—DSL: Procedural foreach statement

The following also apply:
a) expression shall be of a collection type (i.e., array, list, map or set).

b) The body of the foreach statement is a sequential block in which procedural stmt is evaluated once
for each element in the collection.

c) iterator identifier specifies the name of an iterator variable of the collection element type. Within
procedural_stmt, the iterator variable, when specified, is an alias to the collection element of the
current iteration.

d) index_identifier specifies the name of an index variable. Within procedural stmt, the index variable,
when specified, corresponds to the element index of the current iteration.

Copyright © 2021 Accellera. All rights reserved.
393

2

Portable Test and Stimulus Standard 2.0 — April 2021

1) For arrays and lists, the index variable shall be a variable of type int, ranging from 0 to one
less than the size of the collection variable, in that order.

2) For maps, the index variable shall be a variable of the same type as the map keys, and range
over the values of the keys. The order of key traversal is undetermined.

3) For sets, an index variable shall not be specified.

Both the index and iterator variables, if specified, are implicitly declared within the foreach scope
and limited to that scope. Regular name resolution rules apply when the implicitly declared variables
are used within the foreach body. For example, if there is a variable in an outer scope with the same
name as the index variable, that variable is shadowed (masked) by the index variable within the
foreach body. The index and iterator variables are not visible outside the foreach scope.

Either an index variable or an iterator variable or both shall be specified. For a set, an iterator vari-
able shall be specified, but not an index variable.

The index and iterator variables are read-only. Their values shall not be changed within the foreach
body. It shall be an error to change the contents of the iterated collection variable with the foreach
body.

22.7.8.2 C++ syntax

The corresponding C++ syntax for Syntax 161 is shown in Syntax 162.

pss::foreach

Defined in pss/foreach.h (C.29).

Declare a foreach statement.

\Member functions

class foreach;

template<T>

foreach (const attr<T>& iter, const attr<vec<T>>& array,
std::function<void(void)> loop stmts) :declare procedural foreach statement on array of
non-rand attributes using lambda (specializations provided for T = int and bit)

foreach (const attr<T>& iter, const rand attr<vec<T>>& array,
std::function<void(void)> loop_stmts) :declare procedural foreach statement on array of
rand attributes using lambda (specializations provided for T = int and bit)

template<T>

foreach (const attr<T>& iter, const attr<vec<T>>& array, const detail::Stmté&
/* sequence& */ loop_ stmts) :declare procedural foreach statement on array of non-rand attributes
using sequence construct (specializations provided for T = int and bit)

foreach (const attr<T>& iter, const rand attr<vec<T>>& array, const
detail::Stmt& /* sequence& */ loop stmts) :declare procedural foreach statement on array
of rand attributes using sequence construct (specializations provided for T = int and bit)

Syntax 162—C++: Procedural foreach statement

NOTE—Only iteration over arrays is supported in PSS/C++. foreach iteration over other collection types is not sup-
ported.

NOTE—In PSS/C++, the index and iteration variables must be explicitly declared in the containing scope of the foreach

loop.

Copyright © 2021 Accellera. All rights reserved.
394

Portable Test and Stimulus Standard 2.0 — April 2021

22.7.9 if-else statement

The procedural if-else statement introduces a branch point (see Syntax 163 and Syntax 164).

22.7.9.1 DSL syntax

procedural stmt ::=
procedural sequence block stmt
| procedural data declaration
| procedural assignment_stmt
| procedural void function call stmt
| procedural return_stmt
| procedural repeat stmt
| procedural foreach stmt
| procedural if else stmt

procedural if else stmt ::= if (expression) procedural stmt [else procedural stmt]

Syntax 163—DSL: Procedural if-else statement

expression shall be of type bool.
22.7.9.2 C++ syntax

The corresponding C++ syntax for Syntax 163 is shown in Syntax 164.

Copyright © 2021 Accellera. All rights reserved.
395

Portable Test and Stimulus Standard 2.0 — April 2021

pss::if_then
Defined in pss/if_then.h (see C.31).

class if then;
Declare if-then procedural statement.
Member functions

if then (const cond& a cond, std::function<void(void)> true_ stmts)
: Declare procedural if-then statement using lamda

if then (const cond& a_cond, const detail::Stmté& /* sequence& */ true stmts)
: Declare procedural if-then statement using sequence construct

pss::if_then_else
Defined in pss/if_then.h (see C.31).

class if then else;
Declare if-then-else procedural statement.
Member functions

if then_else (const condé& a_cond, std::function<void(void)> true_stmts,
std::function<void(void)> false stmts) : Declare procedural if-then-else statement using
only lamda

if then else (const cond& a _cond, std::function<void(void)> true stmts, const
detail::Stmt& /* sequence& */ false stmts) :Declare procedural if-then-else statement
using lambda (for true statements) and sequence construct (for false statements)

if then else (const cond& a cond, const detail::Stmté& /* sequences& */
true stmts, std::function<void(void)> false stmts) :Declare procedural if-then-else
statement using sequence construct (for true statements) and lamda (for false statements)

if then else (const cond& a cond, const detail::Stmté& /* sequence& */
true stmts, const detail::Stmt& /* sequence& */ false stmts) :Declare
procedural if-then-else statement using only sequence constructs

Syntax 164—C++: Procedural if-else statement

22.7.9.3 Examples

target function int max (int a, int b) {
int c;

if (a > b) {

c = a;
} else {
c = b;

return c;

Example 336—DSL: Procedural if-else statement

Copyright © 2021 Accellera. All rights reserved.
396

Portable Test and Stimulus Standard 2.0 — April 2021

function<result<int> (arg<int>, arg<int>)> max {"max",
result<int>(), arg<int>("a"), arg<int>("b"), [&] (arg<int> a, arg<int> b) {
attr<int> c("c");

if then else(cond(a > b),
[(¢10 { ¢ =a; },
[&]1 () { ¢ =Db; }

);

pss_return {c};

Example 337—C++: Procedural if-else statement

22.7.10 match statement

The procedural match statement specifies a multi-way decision point that tests whether an expression
matches one of a number of other expressions and executes the matching branch accordingly (see
Syntax 165 and Syntax 166).

22.7.10.1 DSL syntax

procedural stmt ::=
procedural sequence block stmt
| procedural data declaration
| procedural assignment stmt
| procedural void function_call_stmt
| procedural return_stmt
| procedural repeat stmt
| procedural foreach stmt
| procedural if else stmt
| procedural match_stmt
[...
procedural match_stmt ::=
match (match_expression) { procedural match choice { procedural match choice } }
match_expression ::= expression
procedural _match choice ::=
| open_range list | : procedural stmt

| default : procedural stmt

Syntax 165—DSL: Procedural match statement

The following also apply:
a) When the match statement is evaluated, the match expression is evaluated.

b) After the match expression is evaluated, the open_range list of each procedural match choice
shall be compared to the match_expression. open_range_lists are described in 9.5.9.1.

c) Ifthere is exactly one match, then the corresponding branch shall be evaluated.

Copyright © 2021 Accellera. All rights reserved.
397

Portable Test and Stimulus Standard 2.0 — April 2021

d) It shall be an error if more than one match is found for the match_expression.

e) If'there are no matches, then the default branch, if provided, shall be evaluated.

f) The default branch is optional. There may be at most one default branch in the match statement.
g) If a default branch is not provided and there are no matches, it shall be an error.

22.7.10.2 C++ syntax

The corresponding C++ syntax for Syntax 165 is shown in Syntax 166.

pss::match

Defined in pss/ctrl_flow.h (see C.21).
class match;

Declare a match statement.

Member functions
template<class... R> match (const condé& expr,
R&&... /* choice|default choice */ stmts) :constructor
pss::choice

Defined in pss/ctrl_flow.h (see C.21).
class choice;

Declare a match choice statement.

Member functions
template<class... R> choice (const range& range expr,
R&&... /* std::function|sequence& */ choice stmts) : constructor

pss::default_choice

Defined in pss/ctrl_flow.h (see C.21).
class default choice;

Declare a match default choice statement.

Member functions
template<class... R> default choice (
R&&... /* std::function|sequence& */ choice stmts) :constructor

Syntax 166—C++: Procedural match statement

Copyright © 2021 Accellera. All rights reserved.
398

Portable Test and Stimulus Standard 2.0 — April 2021

22.7.10.3 Examples

target function int bucketize (int a) {
int res;

match (a) {
[0..3]: res =
[4..7]: res =
[8..15]: res =
default: res =

N Ne .

Sw N

~.

}

return res;

Example 338—DSL: Procedural match statement

function<result<int>(arg<int>)> bucketize { "bucketize",
result<int>(), arg<int>("a"), [&] (arg<int> a) {
attr<int> res("res");

match (cond(a),

choice {range(0, 3), [&]() { res = 1; }},
choice {range(4, 7), [&]1() { res = 2; }},
choice {range(8, 15),[&]1 () { res = 3; }1},
default choice ({ [&] () { res = 4; }}

);

pss_return {res};

Example 339—C++: Procedural match statement

Copyright © 2021 Accellera. All rights reserved.
399

Portable Test and Stimulus Standard 2.0 — April 2021

22.7.11 break/continue statement

The procedural break and continue statements allow for additional control in loop termination (see
Syntax 167 and Syntax 168).

22.7.11.1 DSL syntax

procedural stmt ::=
procedural sequence block stmt

| procedural data declaration

| procedural assignment stmt

| procedural void function call stmt

| procedural return_stmt

| procedural repeat stmt

| procedural foreach stmt

| procedural if else stmt

| procedural match_stmt

| procedural break stmt

| procedural continue stmt

| stmt_terminator
procedural break stmt ::= break ;
procedural continue stmt ::= continue ;

Syntax 167—DSL: Procedural break/continue statement

The following also apply:
a) The semantics are similar to break and continue in C++.

b) break and continue may only appear within loop statements (repeat-count, repeat-while or
foreach). Within a loop, break and continue may be nested in conditional branch or match state-
ments.

c) break and continue affect the innermost loop statement they are nested within.

d) break signifies that execution should continue from the statement after the enclosing loop construct.
continue signifies that execution should proceed to the next loop iteration.

Copyright © 2021 Accellera. All rights reserved.
400

Portable Test and Stimulus Standard 2.0 — April 2021

22.7.11.2 C++ syntax

The corresponding C++ syntax for Syntax 167 is shown in Syntax 168.

pss::pss_break

Defined in pss/ctrl_flow.h (see C.21).
class pss break;

Declare a ‘break’ statement.

Member functions
pss_break (void): constructor

pss: :pss_continue

Defined in pss/ctrl_flow.h (see C.21).
class pss_continue;

Declare a ‘continue’ statement.

Member functions

pss_continue (void): constructor

Syntax 168—C++: Procedural break/continue statement

22.7.11.3 Examples

// Sum all elements of 'a' that are even, starting from a[0], except those
// that are equal to 42. Stop summation if the value of an element is 0.

function int sum(int a[100]) {

int res;
res = 0;
foreach (el : a) {
if (el == 0)
break;
if (el == 42)
continue;
if ((el & 2) == 0) {
res = res + el;

return res;

Example 340—DSL: Procedural foreach statement with break/continue

Copyright © 2021 Accellera. All rights reserved.
401

Portable Test and Stimulus Standard 2.0 — April 2021

function<result<int>(arg<attr vec<int>>)> sum { "sum",

result<int>(), arg<attr vec<int>>("a", 100) [&] (arg<attr vec<int>> a) {
attr<int> res("res");
attr<int> el ("el");

res = 0;

foreach(el, a

(&1 () f

if then(cond(el == 0),

(&1 () { pss_break(); })7
if then(cond(el == 42),

[&] () { pss_continue(); });
if then(cond((el % 2) == 0),

[&] () { res = res + el; }),

) ;

pss_return {res};

Example 341—C++: Procedural foreach statement with break/continue

22.7.12 exec block

Example 342 shows how an exec body can be specified using procedural constructs in DSL. Example 343
shows the equivalent in PSS/C++.

action A {
rand bool flag;

exec body {
int wvar;

{
10;

if(flagqg)
var =

} else {
var = 20;

}

// send cmd is an imported function

send cmd (var) ;

Example 342—DSL: exec block using procedural control flow statements

Copyright © 2021 Accellera. All rights reserved.
402

Portable Test and Stimulus Standard 2.0 — April 2021

class A : public action {

//
rand attr<bool> flag;

exec e { exec::body, [&] () {
attr<int> var{"var"};

if then else(flag,
(&1 () { var = 10; 1},
[&] () { var = 20; }
)
send cmd (var) ;

}i
b7

Example 343—C++: Generative exec block using procedural control flow statements

22.8 C++ in-line implementation for solve exec blocks

When C++-based PSS input is used, the overhead in user code (and possibly performance) of solve-time
interaction with non-PSS behavior can be reduced. This is applicable in cases where the PSS/C++ user code
can be invoked by the PSS implementation during the solve phase and computations can be performed
natively in C++, not with PSS procedural code.

In-line exec blocks (see Syntax 139) are simply predefined virtual member functions of the library classes
(action and structure), the different flow/resource object classes (pre_solve and post _solve), and
component (init_ down and init_up). In these functions, arbitrary procedural C++ code can be used:
statements, variables, and function calls, which are compiled, linked, and executed as regular C++. Using an
in-line exec is similar in execution semantics to calling a foreign C/C++ function from the corresponding
PSS-native exec.

In-line execs shall be declared in the context in which they are used with a class exec; if any PSS attribute
is assigned in the exec’s context, it shall be declared through an exec constructor parameter.

NOTE—In-line solve execs are not supported in PSS/DSL.
Example 344 depicts an in-line post_solve exec. In it, a reference model for a decoder is used to compute

attribute values. Notice that the functions that are called here are not PSS imported functions but rather
natively declared in C++.

Copyright © 2021 Accellera. All rights reserved.
403

Portable Test and Stimulus Standard 2.0 — April 2021

// C++ reference model functions
int predict mode (int mode, int size){ return 0;}
int predict size(int mode, int size){ return 0;}

class mem buf : public buffer {
attr<int> mode {"mode"};
attr<int> size {"size"};

b

class decode mem : public action {
input<mem buf> in {"in"};

output<mem buf> out {"out"};

exec e { exec::post solve, { out->mode, out->size } };

void post solve () {
out->mode.val () = predict mode (in->mode.val(), in->size.val());
out->size.val() = predict size(in->mode.val(), in->size.val());

b

Example 344—C++: in-line exec

22.9 C++ generative implementation for target exec blocks

When C++-based PSS input is used, the generative mode for target exec blocks can be used. Computation
can be performed in native C++ for purpose of constructing the description of procedural execs or target-
template-code execs. This is applicable in cases where the C++ user code can be invoked by the PSS
implementation during the solve or execution phase. Specifying an exec in generative mode has the same
semantics as the corresponding exec in declarative code. However, the behavior exercised by the PSS
implementation is the result of the computation performed in the context of the user PSS/C++ executable.

Specifying execs in generative mode is done by passing a function object as a lambda expression to the exec
constructor—a generative function. The function gets called by the PSS implementation after solving the
context entity, either before or during test execution, which may vary between deployment flows. For
example, in pre-generation flow generative functions are called as part of the solving phase. However, in on-
line-generation flow, the generative function for exec body may be called at runtime, as the actual
invocation of the action’s exec body, and, in turn, invoke the corresponding functions directly as it
executes. Native C++ functions can be called from generative functions, but should not have side-effects
since the time of their call may vary.

A lambda capture list can be used to make scope variables available to the generative function. Typically
simple by-reference capture (' [&] ') should be used to access PSS fields of the context entity. However,
other forms of capture can also occur.

NOTE—Generative target execs are not supported in PSS/DSL.

Copyright © 2021 Accellera. All rights reserved.
404

Portable Test and Stimulus Standard 2.0 — April 2021

22.9.1 Generative procedural execs

Target procedural execs (body, run_start, and run_end) can be specified in generative mode (see
Syntax 169). However, run_start and run_end are restricted to pre-generation flow (see Table 24).

22.9.1.1 C++ syntax

pss::exec

Defined in pss/exec.h (see C.25).
class exec;

Declare a generative procedural exec.

Member functions

exec (ExecKind kind, std::function<void()> genfunc)

Syntax 169—C++: generative procedural exec definitions

The behavioral description of procedural execs is a sequence of function calls and assignment statements. In
generative specification mode, the same C++ syntax is used as in the declarative mode, through variable
references, operator=, and function: :operator (). PSS implementation may define these
operators differently for different deployment flows.

a) Pre-generation flow—The generative function call is earlier than the runtime invocation of the
respective exec block. As the generative function runs, the PSS implementation must record func-
tion calls and assignments to attributes, along with the right-value and left-value expressions, to be
evaluated at the right time on the target platform.

b) Online-generation flow—The generative function call may coincide with the runtime invocation of
the respective exec block. In this case, the PSS implementation shall directly evaluate the right-
value and left-value expressions, and perform any PSS function calls and PSS attribute assignments.

22.9.1.2 Examples
Example 345 depicts a generative procedural exec defining an action’s body. In this exec block, action

attributes appear in the right-value and left-value expressions. Also, a function call occurs in the context of a
native C++ loop, thereby generating a sequence of the respective calls as the loop unrolls.

Copyright © 2021 Accellera. All rights reserved.
405

Portable Test and Stimulus Standard 2.0 — April 2021

namespace mem ops pkg {
function<result<bit>(in_arg<int>)> alloc mem {"alloc mem",
result<bit>(width (63,0)),
in arg<int>("size")
bi
function<result<void>(in arg<bit>, in arg<bit>)> write word {"write word",
in arg<bit>("addr", width(63,0)),
in arg<bit>("data", width(31,0))
}i
}i

class my comp

class write multi words

public component {
: public action {

rand attr<int> num of words {"num of words",

range (2,8) };

attr<bit> base addr {"base addr", width(63,0)};

// exec specification in generative mode
exec body {exec::body, [&](){ // capturing action variables
base addr = mem ops pkg::alloc mem(num of words*4);
// in pre-gen unroll the loop,
// evaluating num of words on solve platfrom
for (int i=0; i < num of words.val(); i++) {
mem ops_pkg::write word(base addr + i*4, OxA);
}
}
}7
bi
type decl<write multi words> write multi words decl;

i

Example 345—C++: generative procedural exec

Example 346 illustrates the possible code generated for write multi words ().

void main (void) {

uint64 t pstool addr;
pstool addr target_alloc_mem(l6);

((uint32 t)pstool addr + 0) = O0xA;
((uint32 t)pstool addr + 4) = O0xA;
((uint32 t)pstool addr + 8) = 0xA;
((uint32 t)pstool addr + 12) = OxA;

Example 346—C++: Possible code generated for write_multi_words()

22.9.2 Generative target-template execs

Target-template-code execs (body, run_start, run_end, header, declaration, and file) can be specified in
generative mode (see Syntax 170); however, their use is restricted to pre-generation flow (see Table 24).

Copyright © 2021 Accellera. All rights reserved.
406

Portable Test and Stimulus Standard 2.0 — April 2021

22.9.2.1 C++ syntax

pss::exec

Defined in pss/exec.h (see C.25).
class exec;

Declare a generative target-template exec.

Member functions

exec (ExecKind kind, std::string&& language or file,
std::function<void(std::ostream&)> genfunc) : generative target-template

Syntax 170—C++: generative target-template exec definitions

The behavioral description with target-template-code execs is given as a string literal to be inserted verbatim
in the generated target language, with expression value substitution (see 22.5). In generative specification
mode, a string representation with the same semantics is computed using a generative function. The
generative function takes std: : ostream as a parameter and should insert the string representation to it.
As with the declarative mode, the target language identifier must be provided.

22.9.2.2 Examples

Example 347 depicts a generative target-template-code exec defining an action’s body. In this function,
strings inserted to the C++ ostream object are treated as C code-templates. Notice that a code line is
inserted inside a native C++ loop here, thereby generating a sequence of the respective target code lines.

class my comp : public component {
class write multi words : public action ({
rand attr<int> num of words { "num of words", range(2,8) };
attr<int> num of bytes {"num of bytes"};

void post solve () {
num of bytes.val() = num of words.val()*4;
}
// exec specification in target code generative mode
exec body { exec::body, "C",
[&] (std::ostreamé& code) {
code<< " uint64 t pstool addr;\n";
code<< " pstool addr = target alloc mem({{num of bytes}});\n";

// unroll the loop,
for (int i=0; i < num of words.val(); i++) {
code<< "* ((uint32 t*)pstool addr + " << i*4 << ") = O0xA;\n";
}
}
}i
b7
type decl<write multi words> write multi words decl;

b

Example 347—C++: generative target-template exec

Copyright © 2021 Accellera. All rights reserved.
407

Portable Test and Stimulus Standard 2.0 — April 2021

The possible code generated for write multi words () is shown in Example 346.

22.10 Comparison between mapping mechanisms

Previous sections describe three mechanisms for mapping PSS entities to external (non-PSS) definitions:
functions that directly map to foreign API (see 22.4), functions that map to foreign language procedural code
using target code templates (see 22.6), and exec blocks where arbitrary target code templates are in-lined
(see 22.5). These mechanisms differ in certain respects and are applicable in different flows and situations.
This section summarizes their differences.

PSS tests may need to be realized in different ways in different flows:
— by directly exercising separately-existing environment APIs via procedural linking/binding;

— by generating code once for a given model, corresponding to entity types, and using it to execute
scenarios; or

— by generating dedicated target code for a given scenario instance.

Table 23 shows how these relate to the mapping constructs.

Table 23—Flows supported for mapping mechanisms

No target code Per-model Per-test target Non-procedural
. target code : ..
generation . code generation binding
generation
Direct-mapped X X X
functions
Target-template X X
functions
Target-template X X
exec-blocks

Not all mapping forms can be used for every exec kind. Solving/generation-related code must have direct
procedural binding since it is executed prior to possible code generation. exec blocks that expand
declarations and auxiliary files shall be specified as target-templates since they expand non-procedural code.
The run_start exec block is procedural in nature, but involves up-front commitment to the behavior that is
expected to run.

Table 24 summarizes these rules.

The possible use of action and struct attributes differs between mapping constructs. Explicitly declared
prototypes of functions enable the type-aware exchange of values of all data types. On the other hand, free
parameterization of uninterpreted target code provides a way to use attribute values as target-language meta-

level parameters, such as types, variables, functions, and even preprocessor constants.

Table 25 summarizes the parameter passing rules for the different constructs.

Copyright © 2021 Accellera. All rights reserved.
408

Portable Test and Stimulus Standard 2.0 — April 2021

Table 24—exec block kinds supported for mapping mechanisms

Action runtime Non-procedural Global test Sol\fe exec blocks:
. exec blocks: init_down,
behavior exec blocks: . T
header, init_up,
exec blocks: . run_start,
declaration, — pre_solve,
body run_end
file - post_solve
Direct-mapped X X (only in pre- X
functions generation)
Target-template X X (only in pre-
functions generation)
Target-template X X X
exec-blocks

Table 25—Data passing supported for mapping mechanisms

Back assignment to PSS | Passing user-defined and Using PSS attributes in
attributes aggregate data types non-expression positions

Direct-mapped X X
functions
Target-template X
functions
Target-template X
exec-blocks

22.11 Exported actions

Imported functions and classes specify functions and classes external to the PSS description that can be
called from the PSS description. Exported actions specify actions that can be called from a foreign language.
See also Syntax 171 and Syntax 172.

22.11.1 DSL syntax

export_action ::= export [platform qualifier] action type identifier
function_parameter list prototype ;

Syntax 171—DSL: Export action declaration

The export statement for an action specifies the action to export and the parameters of the action to make
available to the foreign language, where the parameters of the exported action are associated by name with
the action being exported. The export statement also optionally specifies in which phases of test generation
and execution the exported action will be available.

The following also apply:

a) As with imported functions (see 22.2.1), the exported action is assumed to always be available if the
function availability is not specified.

b) Each call into an export action infers an independent tree of actions, components, and resources.

Copyright © 2021 Accellera. All rights reserved.
409

Portable Test and Stimulus Standard 2.0 — April 2021

¢) Constraints and resource allocation are considered within the inferred action tree and are not consid-
ered across imported function / exported action call chains.

22.11.2 C++ syntax

The corresponding C++ syntax for Syntax 171 is shown in Syntax 172.

pss::export_action
Defined in pss/export_action.h (see C.26).

enum kind {solve, target};
template <class T=int> class export action;

Declare an export action.
Member functions
export action (const std::vector<detail::ExportActionParam> é¶ms)
constructor

export action (kind, const std::vector<detail::ExportActionParam> ¶ms)
constructor

Syntax 172—C++: Export action declaration

22.11.3 Examples

Example 348 and Example 349 show an exported action. In this case, the action comp: : Al is exported.
The foreign language invocation of the exported action supplies the value for the mode field of action Al.
The PSS processing tool is responsible for selecting a value for the val field. Note that comp: : Al is
exported to the target, indicating the target code can invoke it.

Copyright © 2021 Accellera. All rights reserved.
410

Portable Test and Stimulus Standard 2.0 — April 2021

component comp {

action Al {
rand bit mode;
rand bit[31:0] val;

constraint {
if (mode!=0) {
val in [0..107];
} else {
val in [10..1007;

package pkg {
// Export Al, providing a mapping to field 'mode'
export target comp::Al (bit mode) ;

Example 348—DSL: Export action

class comp : public component {
class Al : public action {
rand attr<bit> mode {"mode"};
rand attr<bit> val { "val", width(32) };

constraint c {
if then else { cond(mode!=0),
in (val, range(0,10)),
in (val, range(10,100))
t
b
b
type decl<Al> Al decl;
b

namespace pkg {
// Export Al, providing a mapping to field ’'mode’
export action<comp::Al> comp Al {export action<>::target,
{ export action<>::in<bit>("mode") }
bi
bi

Example 349—C++: Export action

Copyright © 2021 Accellera. All rights reserved.
411

Portable Test and Stimulus Standard 2.0 — April 2021

22.11.4 Export action foreign language binding

An exported action is exposed as a function in the target foreign language (see Example 350). The
component namespace is reflected using a language-specific mechanism: C++ namespaces, SystemVerilog
packages. Parameters to the exported action are implemented as parameters to the foreign language function.

namespace comp {
void Al (unsigned char mode) ;

}

Example 350—EXxport action foreign language implementation

NOTE—Foreign language binding is the same for DSL and C++.

Copyright © 2021 Accellera. All rights reserved.
412

Portable Test and Stimulus Standard 2.0 — April 2021

23. Conditional code processing

It is often useful to conditionally process portions of a PSS model based on some configuration parameters.
This clause details a compile if construct that can be evaluated as part of the elaboration process.

NOTE—PSS/C++ does not provide features directly corresponding to PSS/DSL conditional code processing. Native
C++ features (e.g., the pre-processor) provide similar features.

23.1 Overview
This section covers general considerations for using compile statements.
23.1.1 Statically-evaluated statements

A statically-evaluated statement marks content that may or may not be elaborated. The description within a
statically-evaluated statement shall be syntactically correct, but need not be semantically correct when the
static scope is disabled for evaluation.

A statically-evaluated statement may specify a block of statements. However, this does not introduce a new
scope in the resulting description.

23.1.2 Elaboration procedure

Compile statements are processed top-to-bottom within a given source unit. The following steps are
performed in processing source code in the presence of conditional compilation directives:

a) Syntactic code analysis is performed.
b) Compile-time expressions are evaluated in order within the following contexts:
1) static const initializers
2) compile if conditions (see 23.2)
These expressions are evaluated based on types and static constants declared:
1) Unconditionally, or in an enabled compile if branch, within a previously-processed source unit

2) Unconditionally, or in an enabled compile if branch, previously processed within the current
source unit

c) Globally-visible content and the content within enabled compile if branches is elaborated.
23.1.3 Compile-time expressions

The value of any compile if expressions must be determinable at compile time. Because compile if
statements are evaluated early in PSS source processing, only types and constants declared in package
scopes may be referenced. Types and constants declared in type scopes (e.g., an action type declared within
a component type) may not be referenced.

The example below highlights the reference rules for conditional compilation directives:
a) Conditional compilation directives are evaluated based on previously defined elements.
1) Consequently, the first directive (compile has (s)) evaluates true because pl: : s is visi-
ble at this point in the evaluation.

2) The second directive (compile has (t)) also evaluates true because p2 : : t has been previ-
ously declared in the source unit.

b) Conditional compilation directives may not reference inner members of types. Consequently,
attempting to reference t : : A is an error, since t is a type and A is an inner member of type t.

Copyright © 2021 Accellera. All rights reserved.
413

Portable Test and Stimulus Standard 2.0 — April 2021

package pl {
struct s {
static const int A = 3;
}i
}s

package p2 {
import pl::*;

// derived from p2::s defined later in this file

struct t : s { };

// namely pl::s
compile if (compile has (s)) { ..}

// namely p2::t (even though its super-type is not yet known)
compile if (compile has (t)) { ..}

compile if (t::A == 2) { ..}

struct s {};

// evaluates to true because such a type has been previously defined,

// evaluates to true because such a type has been previously defined,

// Illegal! Cannot reference a member of a struct in compile-if context

Example 351—DSL: Conditional compilation evaluation

23.2 compile if
23.2.1 Scope

compile if statements may appear in the following scopes:
— Global/package
— Action
— Component

— Struct

Copyright © 2021 Accellera. All rights reserved.
414

Portable Test and Stimulus Standard 2.0 — April 2021

23.2.2 DSL syntax

Syntax 173 shows the grammar for a compile if statement.

package body compile if ::= compile if (constant_expression)
package body compile if item [else package body compile if item]
package body compile if item ::=
package body item
| { { package body item } }
action_body_compile_if ::= compile if (constant_expression)
action_body_compile_if item [else action_body compile if item]
action_body compile_if item ::=
action_body_item
| { { action_body item } }
component_body compile_if ::= compile if (constant_expression)
component_body compile if item [else component body compile if item]
component_body compile if item ::=
component_body_item
| { { component body item } }
struct_body compile_if ::= compile if (constant_expression)
struct body compile if item [else struct body compile if item]
struct_body_compile_if item ::=
struct_body_item
| { { struct_body item } }

Syntax 173—DSL: compile if declaration

23.2.3 Examples

Example 352 shows an example of conditional processing if PSS were to use C pre-processor directives. If
the PROTOCOL VER 1 2 directive is defined, then action new flow is evaluated. Otherwise, action
old flow is processed.

NOTE—Example 352 is only shown here to illustrate the functionality of C pre-processor directives in a familiar for-
mat. It is not part of PSS.

#ifdef PROTOCOL VER 1 2

action new flow {
activity { ... }

}

#else

action old flow {
activity { ... }

}

#endif

Example 352—Conditional processing (C pre-processor)

Copyright © 2021 Accellera. All rights reserved.
415

Portable Test and Stimulus Standard 2.0 — April 2021

Example 353 shows a DSL version of Example 352 using a compile if statement instead.

package config pkg {
const bool PROTOCOL VER 1 2 = false;

}

compile if (config pkg::PROTOCOL VER 1 2) {
action new flow {

activity { ... }
}
} else {
action old flow {
activity { ... }

}

Example 353—DSL: Conditional processing (compile if)

When the frue case is triggered, the code in Example 353 is equivalent to:
action new flow {
activity { ... }
}
When the false case is triggered, the code in Example 353 is equivalent to:
action old flow {

activity { ... }
}

23.3 compile has
compile has allows conditional elaboration to reason about the existence of types and constants. The

compile has expression evaluates to frue if a type or constant has been previously declared unconditionally
or within an enabled conditional block (see 23.1.2); otherwise, it evaluates to false.

23.3.1 DSL syntax

Syntax 174 shows the grammar for a compile has expression.

compile_has expr ::= compile has (static_ref path)

static_ref path ::=[::] { type_identifier elem :: } member path elem

Syntax 174—DSL: compile has expression

Copyright © 2021 Accellera. All rights reserved.
416

Portable Test and Stimulus Standard 2.0 — April 2021

23.3.2 Examples

Example 354 checks whether the config pkg: :PROTOCOL VER 1 2 field exists and tests its value if

it does. In this example, o1d_ flow will be used because config pkg::PROTOCOL VER 1 2 does
not exist.

package config pkg {
}

compile if (compile has(config pkg::PROTOCOL VER 1 2) &&
config pkg::PROTOCOL VER 1 2) {
action new flow {

activity { ... }
}
} else {
action old flow {
activity { ... }

}

Example 354—DSL: compile has

Example 355 is composed of a single source unit.

— The first top-level compile if block checks for the existence of X. This evaluates to false, since X is
only subsequently declared within the source unit.

— The second top-level compile if block checks for the non-existence of Y. This evaluates to #rue, since

Y was not previously declared (the first compile if block was not expanded). As a consequence, Y is
declared with a value of 0.

compile if (compile has (X)) {
const int Y = 2;
compile if (compile has(Y)) {
const int Z;
}
}

const int X = 1;

compile if (! (compile has(Y))) {
const int Y=0;
} else {
compile if (compile has(Z)) {
const int A;

}

Example 355—DSL: Nested conditions

Copyright © 2021 Accellera. All rights reserved.
417

Portable Test and Stimulus Standard 2.0 — April 2021

23.4 compile assert

compile assert assists in flagging errors when the source is incorrectly configured. This construct is
evaluated during elaboration. A tool shall report a failure if constant expression does not evaluate to true,
and report the user-provided message, if specified.

23.4.1 DSL syntax

Syntax 175 shows the grammar for a compile assert statement.

compile assert stmt ::= compile assert (constant expression [, string literal |) ;

Syntax 175—DSL: compile assert statement

23.4.2 Examples

Example 356 shows a compile assert example.

compile if (compile has (FIELD2)) {
static const FIELD1 = 1;
}

compile if (compile has (FIELD1)) {
static const FIELD2 = 2;
}
compile assert (compile has (FIELD1l), "FIELDl not found");

Example 356—DSL: compile assert

Copyright © 2021 Accellera. All rights reserved.
418

Portable Test and Stimulus Standard 2.0 — April 2021

24. PSS core library

The PSS core library provides standard portable functionality and utilities for common PSS applications. It
defines a set of component types, data types, functions, and attributes. The interface of the core library is
specified in PSS-language terms, and its use conforms to the rules of the language. However, the full
semantics of its entities involve reference to type information, solving, scheduling, and runtime services.
Hence, the implementation of the core library depends on inner workings of PSS processing tools and is
expected to be coupled with them.

The core library currently covers functionality in the following areas:
— Representation of execution contexts in the target environment
— Assignments of actions and flow/resource objects to execution contexts
— Representation of target address spaces
— Allocation from and management of target address spaces
— Access to target address spaces

— Representation of and access to registers

This section covers the interface, semantics, and intended use of core library entities in the areas listed
above. Note that it defines a library interface, not new language constructs. The code for the built-in library
package contents appears in Annex D.

NOTE—PSS/C++ does not provide an interface to the core library features—storage management, register models, and
executors.

24.1 Executors

A PSS generated test calls foreign functions available in the target environment, executes target-language
code blocks, and performs target operations provided in the core-library. It does so in accordance with the
user-defined realization of actions and of flow/resource objects specified in the form of target exec blocks—
body, run_start, and run_end—and functions called from them. Foreign function calls, target-language
code blocks, and built-in target operations, all need to be performed under a certain agent of execution
available to the test in the runtime environment, or in short, an executor.

An executor is an abstract notion that may correspond to different kinds of entities in different
environments. For example:

— An embedded processor core or HW thread in a bare-metal environment that executes code gener-
ated by the PSS tool

— A BFM instantiated as a master on an interconnect of the DUT that exposes transactional APIs to the
PSS tool

— A transactor, or testbench agent, connected to an I/O interface of the system that exposes transac-
tional APIs, or higher-level stimulus sequences, to the PSS tool

The PSS core library provides means to represent executors in the PSS description and to assign scenario
entities to them. Executors are characterized by user-defined properties called traits, which serve to control
the assignment of actions/objects to them. For example, the cluster of a CPU core could be represented as a
trait attribute. Related executors are grouped together so that scenario entities can be assigned to a random
instance out of a group. The selection of executors satisfies constraints on their trait attributes, if any are
specified.

In addition, executors can be used to customize the implementation of target functions for specific
environments. Actions assigned to different executors can thereby employ different mappings of portable
operations.

Copyright © 2021 Accellera. All rights reserved.
419

Portable Test and Stimulus Standard 2.0 — April 2021

The PSS built-in package executor_pkg defines types and functions related to the management of
executors. In subsequent sections, except Syntax 176, the enclosing executor_pkg is omitted for brevity.
Examples may also omit import of executor_pkg.

24.1.1 Executor representation

An executor is an execution agent or context available to the test in the runtime environment. Executors are
represented using a core-library component type instantiated in the PSS description. Actions and flow/
resource objects may subsequently be assigned to these executors. This assignment is controlled through an
executor claim struct (see 24.1.2).

Representing executors in a PSS description is optional. In the absence of executor instances, PSS tools are
free to determine the execution context of entities based on other considerations, such as global defaults or
policies.

24.1.1.1 Executor component type
An executor is represented using the template component executor_c, or a subtype of it. The template

parameter is used to tag the executor and possibly to provide additional selection attributes. Template
executor_cis derived from executor_base c.

package executor pkg ({
struct executor trait s {};
struct empty executor trait s : executor trait s {};
component executor base c {};
component executor c
<struct TRAIT : executor_trait s = empty executor_ trait s>
executor base c {

TRAIT trait;
}i

Syntax 176—DSL: Executor component

An executor component is strictly a test-realization artifact. It shall be an error to declare in its scope
scenario model elements, namely: action types, pool instances, and pool binding directives.

24.1.1.2 Executor group component type
Component executor_group_c is used to group one or more executors that serve similar purposes.

Actions and flow/resource objects that claim an executor are assigned to an executor selected out of one
specific group (see more on matching rules in 24.1.2.2).

component executor group c
<struct TRAIT : executor_ trait_ s = empty executor_ trait s> {
function void add executor (ref executor c<TRAIT> exe);

b

Syntax 177—DSL: Executor group component

Copyright © 2021 Accellera. All rights reserved.
420

Portable Test and Stimulus Standard 2.0 — April 2021

An executor group component is strictly a test-realization artifact. It shall be an error to declare in its scope
scenario model elements, namely: action types, pool instances, and pool binding directives.

24.1.1.2.1 add_executor function

Instance function add_executor (see Syntax 177) of executor_group_c is used to populate the
group with executor instances. Executors added to a group must all match with the group’s trait struct type.
The add_executor function may only be called in exec init_down and init_up blocks.

The following also apply:

a) Any executor can be added to a given group, regardless of where it is instantiated in the component
instance tree. This includes executors instantiated above the group, below it, or in a different sub-
tree.

b) An executor instance may not be added more than once to the same group.
¢) An executor instance may be added to more than one group.

d) An executor does not have to be added to any group. An executor that is not part of any group would
be inactive—no exec blocks would ever be assigned to it.

Example 357 demonstrates how executors are defined, instantiated, and added to an executor group. The
executor group my hybrid group c is populated with two different executor types. These two types
may vary in properties, but are both derived from the instantiation of template executor_c with the struct
type master trait s. The executors in this group are treated symmetrically when assigning actions to
them.

struct master trait s : executor trait s {};
component my_ core_executor_c : executor_ c<master trait s> { ... };
component my bus vip executor c : executor c<master trait s> { ... };

component my hybrid group c¢ : executor group c<master trait s> {
my core executor c cores([4];
my bus vip executor c bfms[2];

exec init down ({
foreach (c: cores) {
add executor (c);
}
foreach (b: bfms) {
add executor (b) ;

Example 357—DSL: Defining an executor group

Copyright © 2021 Accellera. All rights reserved.
421

Portable Test and Stimulus Standard 2.0 — April 2021

24.1.2 Executor assignment

An action or a flow/resource object can declare its claim for an executor by instantiating a claim struct. Each
claim instance is statically matched to an executor group that is nearest in the component instance tree and
parameterized by the same trait struct type. The entity is assigned to an executor out of the matching group,
which satisfies the trait constraints.

It is not required that scenario entities be explicitly assigned to an executor even if they contain target exec
blocks. In the absence of explicit assignments, PSS tools are free to determine the execution context of
entities based on other considerations, such as global defaults or policies.

Executors do not generally limit concurrency of PSS behaviors in a test scenario. In cases where
concurrently scheduled actions are assigned to the same underlying executor, the PSS tool is responsible for
employing the means to enable concurrent execution, such as preemptive or cooperative multitasking.

24.1.2.1 Executor claim struct type

An action or a flow/resource object can control its assignment to an executor by declaring an executor claim
—an attribute of template struct type executor claim_s. An executor claim can be a direct field of the
entity, a field of any of its nested structs, or in the case of flow/resource objects, the super-type from which
the object is derived. In all these cases, the assignment to an executor applies in the same way.

An action or a flow/resource object may be assigned to no more than one executor. Therefore, there can only
be one executor claim struct anywhere under a given action or object. Multiple executor claim structs within
the same action or object shall be flagged as an error. Note that the assignment of executors per an executor
claim is not exclusive, and is generally unrelated to the relative scheduling of actions.

struct executor claim s
<struct TRAIT : executor trait s = empty executor trait s> {
rand TRAIT trait;

}r

Syntax 178—DSL: Executor claim struct

Example 358 demonstrates the use of the executor_claim s struct. In this case, action A declares an
executor claim. A’s executor claim is matched with executor group eg that is instantiated directly under its
context component C, as both are parameterized with the same (default) trait type. Consequently, action A
is necessarily assigned to the executor e instantiated under its context component. Component C is
instantiated twice under pss_top. Under the entry action test, action A is invoked three times. The
generated test will call the function do_something () twice under the execution context associated with
executor c1.e, and subsequently once under the execution context associated with executor c2 . e.

Copyright © 2021 Accellera. All rights reserved.
422

Portable Test and Stimulus Standard 2.0 — April 2021

component C {
executor_c<> e;
executor group_ c<> eg;
exec init down ({
eg.add executor (e);

}

action A {
rand executor claim s<> ec;
exec body C = """
do_something () ;
}i
b

component pss top {
C cl,c2;

action test {
C::A al, a2, a3;

activity {
parallel {
al with { comp == this.comp.cl; };
a2 with { comp == this.comp.cl; };
a3 with { comp == this.comp.c2; };

Example 358—DSL: Simple executor assignment

24.1.2.2 Rules for matching an executor claim with an executor group

An executor claim is matched with an executor group for the purpose of selecting an executor. The matching
is based on the static structure of the model. A claim is resolved to an executorgroup that:

a) is parameterized by the same trait type as the claim;

b) is instantiated in a containing component of the declaring scenario entity (the context component
hierarchy of an action or the container component of a flow/resource object pool);

¢) and is nearest in the component hierarchy going up from the context component to the root compo-
nent.

It shall be an error if no executor group matches a claim per the above rules. Similarly, it shall be an error if
more than one executor group matches a claim.

Note that given the above rules, instantiating a group within a group would be pointless, as no executor
claim could match the inner group.

Copyright © 2021 Accellera. All rights reserved.
423

Portable Test and Stimulus Standard 2.0 — April 2021

24.1.2.3 Claim trait semantics

The trait type of an executor claim must be the same as that of the executor selected for the declaring entity.
In addition, the trait attribute values of the executor claim instance must be equal to the values of the
corresponding attributes of the executor trait. Hence, the selected executor shall satisfy the claim trait
constraints.

Example 359 demonstrates the use of the executor trait struct for the selection of executors. In this example,
executors in group my embedded cores group_c, representing eight CPU cores, are classified into
two clusters, each consisting of four cores. Action my ip c::op claims an executor. It constrains the
selection of the executor, relating the executor cluster ID to other attributes. Action
ops_on_two_clusters executes two op actions, one on each cluster. Note that the one assigned to
cluster 0 will have its input buffer mem kind not equal to DDR, due to the constraint in action op.

struct my core trait s : executor trait s ({
rand int in [0..1] cluster id;
}i

component my embedded cores group c : executor group c<my core trait s> {
executor c<my core trait s> cores[8];
exec init down {
foreach (c: cores[i]) {
c.trait.cluster id = i/4;
add executor (c);

}s

component my ip c {
action op {
input data buff in buff;
rand executor claim s<my core trait s> core;
constraint in buff.mem kind == DDR -> core.trait.cluster id != 0;
}s
}i

component pss top {
my embedded cores group c embedded core group;
my ip ¢ my ip;

action ops on two clusters ({
activity {
do my ip c::op with { core.trait.cluster id == 0; };
do my ip c::op with { core.trait.cluster id == 1; };

}s
b

Example 359—DSL: Definition and use of executor trait

Copyright © 2021 Accellera. All rights reserved.
424

Portable Test and Stimulus Standard 2.0 — April 2021

24.1.2.4 Executor resources

In some cases, the assignment of certain actions to executors needs to be exclusive, ruling out the handling
of concurrent actions by the same execution agent. Resource claims and resource pools express such rules at
the scenario model level, guaranteeing that random schedules satisfy the resource consistency of executors.
In these cases, the executor assigned to actions needs to be in strict correspondence with the resource
instance claimed by them.

A resource object that is derived from template struct executor_claim_s is considered a claim not just
for the purpose of its own executor assignment, but also for that of the actions that claim it as a resource in
either lock or share mode. In other words, from the executor assignment point of view, a reference to a
resource object derived from struct executor_claim_s functions like an executor claim of the action
itself.

In Example 360, resource object my core r represents a processor core at the scenario model level.
Action my ip c::opl needs to be assigned a core exclusively for its duration, and therefore locks a
resource instance. Actionmy ip c::op2 does not require exclusive use of a core, and therefore claims a
resource instance in share mode. Action test executes a random selection of op1 and op2, which need to
be scheduled consistently across the different cores.

Copyright © 2021 Accellera. All rights reserved.
425

Portable Test and Stimulus Standard 2.0 — April 2021

struct my core trait s : executor trait s {
rand int in [0..7] core id;

}i

resource my core r : executor claim s<my core trait s> {
constraint trait.core id == instance id;
bi

component my cores group C : executor group c<my core trait s> {
executor c<my core trait s> cores[8];
exec init down {
foreach (c: cores[i]) {
c.trait.core id = i;
add_executor (c);

}i

component my ip c {
action opl {
lock my core r core;
exec body {
my ip blocking op();

bi

action op2 {
share my core r core;
exec body {
while (!my ip op2 done()) { yield(); }

}i
}i

component pss top {
my cores_group_C core_group;
pool [8] my core r core pool;
bind core pool *;

my ip ¢ my ip;

action test {
activity {
schedule {
replicate (10) {
select {
do my ip c::opl;
do my ip c::0p2;

Example 360—DSL: Use of resource objects as executor claims

Copyright © 2021 Accellera. All rights reserved.
426

Portable Test and Stimulus Standard 2.0 — April 2021

24.1.2.5 Executor query function

The function executor () returns a reference to the executor instance currently operative. When called
during the evaluation of exec blocks of an action or flow/resource object or of any function invoked by
them, it returns the executor instance assigned to that entity. The function executor () can be used,
among other purposes, to delegate generic target functions to an executor-specific implementation.

function ref executor base c executor();

Syntax 179—DSL: Executor query function

Note that the reference returned from executor () for actions assigned to different executors would be
different, even if these actions are executing concurrently. The returned value shall be null if the evaluating
entity is not assigned to any executor. Since assignment to executors is only resolved as part of the solve
process, calling executor () in pre_solve exec blocks shall always return null.

In Example 361, a call to the global function my target op () is delegated to the instance function
my target op impl () of the currently operative executor, through a call to executor (). Function
my target op impl () is declared in component executor_base_c and implemented differently
in two executor subtypes. Consequently, the call to my target op () in the exec body of action
call op will be implemented differently based on the executor assignment of call op.

Copyright © 2021 Accellera. All rights reserved.
427

Portable Test and Stimulus Standard 2.0 — April 2021

function void my target op(int param) {

if (executor () != null) {
executor () .my target op impl (param);
} else {

// default implementation

extend component executor base c {
function void my target op impl (int param);

}i

component A executor c : executor c<> {
function void my target op impl (int param) {
// implementation for execution agent of type A
}
bi

component B executor c : executor c<> {
function void my target op impl (int param) {
// implementation for execution agent of type B
}
bi

component pss_ top {
executor group c<> exe J;
A _executor c a_exe;
B executor c b exe;

exec init down {
exe g.add executor (a exe);
exe g.add executor (b exe);

action call op {
rand executor claim s<> my exe;
exec body {
my target op(10);

Example 361—DSL: Function delegation to executor

Copyright © 2021 Accellera. All rights reserved.
428

Portable Test and Stimulus Standard 2.0 — April 2021

24.2 Address spaces

The address space concept is introduced to model memory and other types of storage in a system. An
address space is a space of storage atoms accessible using unique addresses. System memory, external
storage, internal SRAM, routing tables, memory mapped I/O, etc., are entities that can be modeled with
address spaces in PSS.

An address space is composed of regions. Regions are characterized by user-defined properties called traits.
For example, a trait could be the type of system memory of an SoC, which could be DRAM or SRAM.
Address claims can be made by scenario entities (actions/objects) on an address space with optional
constraints on user-defined properties. An address space handle is an opaque representation of an address
within an address space.

Standard operations are provided to read data from and write data to a byte-addressable address space.
Registers and register groups are allocated within an address space and use address space regions and
handles to read and write register values. Data layout for packed PSS structs is defined for byte-addressable
address spaces.

The PSS built-in package addr reg pkg defines types and functions for registers, address spaces,
address allocation and operations on address spaces. In subsequent sections, except Syntax 180, the
enclosing addr_reg_pkg is omitted for brevity. Examples may also omit import of addr_reg_pkg.
24.2.1 Address space categories

24.2.1.1 Base address space type

An address space is a set of storage atoms accessible using unique addresses. Actions/objects may allocate
one or more atoms for their exclusive use.

Address spaces are declared as components. addr _space_base_c is the base type for all other address
space types. This component cannot be instantiated directly. The definition of addr_space_base c is
shown in Syntax 180.

package addr reg pkg {
component addr space base c¢ {};

Syntax 180—DSL: Generic address space component

24.2.1.2 Contiguous address spaces

A contiguous address space is an address space whose addresses are non-negative integer values. and whose
atoms are contiguously addressed. Multiple atoms can be allocated in one contiguous chunk.

Byte-addressable system memory and blocks of data on disk drive are examples of contiguous address
spaces.

A contiguous address space is defined by the built-in library component contiguous_addr_space c
shown in Syntax 181 below. The meanings of the struct type addr_trait_s and the template parameter
TRAIT are defined in 24.2.2. Address space regions are described in 24.2.3.

Copyright © 2021 Accellera. All rights reserved.
429

Portable Test and Stimulus Standard 2.0 — April 2021

struct addr trait s {};
struct empty addr trait s : addr trait s {};
typedef chandle addr handle t;

component contiguous addr space c <struct TRAIT : addr trait s =
empty addr trait s> : addr space base c

{
function addr handle t add region(addr region s <TRAIT> r);
function addr handle t add nonallocatable region(addr region s <> r);

bool byte addressable = true;
b

Syntax 181—DSL: Contiguous address space component

A contiguous address space is created in a PSS model by creating an instance of component
contiguous_addr space_c in a top-level component or any other component instantiated under the
top-level component.

24.2.1.2.1 add_region function

The add_region function of contiguous address space components is used to add allocatable address
space regions to a contiguous address space. The function returns an address handle corresponding to the
start of the region in the address space. Actions and objects can allocate space only from allocatable regions
of an address space.

Address space regions are defined in 24.2.3. Address space regions are part of the static component
hierarchy. The add_region function may only be called in exec init_down and init_up blocks. Address
handles are defined in 24.4.3.

24.2.1.2.2 add_nonallocatable_region function

The add_nonallocatable_region function of contiguous address space components is used to add
non-allocatable address space regions to a contiguous address space. The function returns an address handle
corresponding to the start of the region in the address space.

The address space allocation algorithm shall not use non-allocatable regions for allocation.
Address space regions are defined in 24.2.3. Address space regions are part of the static component

hierarchy. The add nonallocatable region function may only be called in exec init_down and
init_up blocks. Address handles are defined in 24.4.3.

24.2.1.2.3 Example

Example 362 demonstrates instantiating an address space and adding regions to it (for the definition of
struct addr_region_s, see 24.2.3.2).

Copyright © 2021 Accellera. All rights reserved.
430

Portable Test and Stimulus Standard 2.0 — April 2021

component pss_top {
import addr reg pkg::*;
my ip c ip;
contiguous addr space c<> sys mem;

exec init up {
// Add regions to space here
addr_region_s<> rl;
rl.size = 0x40000000; // 1 GB
(void) sys mem.add region(rl);

addr_region s<> mmio;
mmio.size = 4096;
(void) sys mem.add nonallocatable region(mmio) ;

Example 362—DSL: Contiguous address space in pss_top

24.2.1.3 Byte-addressable address spaces

A byte-addressable space is a contiguous address space whose storage atom is a byte and to/from which PSS
data can be written/read using standard generic operations. The PSS core library standardizes generic APIs
to write data to or read data from any address value as bytes. The read/write API and data layout of PSS data
into a byte-addressable space are defined in 24.4.

By default, component contiguous_addr space_c is a byte-addressable space unless the
byte addressable Boolean field is set to false.

24.2.1.4 Transparent address spaces

Transparent address spaces are used to enable transparent claims—constraining and otherwise operating on
concrete address values on the solve platform. For more information on transparent address claims, see
24.3.3.

All regions of a transparent space provide a concrete start address and the size of the region. Only
transparent regions (see 24.2.3.3) may be added to a transparent address space using function
add_region (). Note however that transparent regions may be added to a non-transparent space.

Component transparent addr space c is used to create a transparent address space (see
Syntax 182). See Example 364.

component transparent addr space c
<struct TRAIT: addr_trait_s = empty addr_ trait_ s>
contiguous_addr_space_ c<TRAIT> {};

Syntax 182—DSL: Transparent address space component

Copyright © 2021 Accellera. All rights reserved.
431

Portable Test and Stimulus Standard 2.0 — April 2021

24.2.1.5 Other address spaces

Other kinds of address spaces, with different assumptions on allocations and generic operations, are
possible. These may be represented as derived types of the corresponding base space/region/claim types. An
example could be a space representing a routing table in a network router. PSS does not attempt to

standardize these.

24.2.2 Address space traits

An address space frait is a PSS struct. A trait struct describes properties of a contiguous address space and
its regions. empty addr_trait_sis defined as an empty trait struct that is used as the default trait type

for address spaces, regions and claims.

All regions of an address space share a trait fype. Every region has its specific trait value.

rand int

}i

b

struct mem
rand mem

rand bool

package ip pkg {

trait s : addr trait s {

kind e

rand cache attr e

in [0..3]

kind;
ctype;
sec level;
mmio;

Example 363—DSL: Example address trait type

kind = SRAM kind = SRAM kind = DRAM
ctype = WB ctype = WB ctype = WB
sec_level = 0 sec_level = 0 sec_level = 0
mmio = false mmio = true mmio = false
size = 4K size = 1M size = 1G
address = 0x400 address = 0x1000 address = 0x1000000
‘L“_f
struct mem trait s : addr_trait s {
rand mem kind e kind; Regions
rand cache attr e ctype;
rand int in [0..3] sec_level;
rand bool mmio;
}i

Figure 19—Address space regions with trait values

Copyright © 2021 Accellera. All rights reserved.

432

Portable Test and Stimulus Standard 2.0 — April 2021

component pss top {

import addr reg pkg::*;
import ip pkg::*;

// IP component
my ip ¢ ip;

// mem trait s trait struct is used for sys mem address space
transparent addr space c<mem trait s> sys mem;

exec init up {
// Add regions to space here. All regions added to sys mem space

// must have trait type mem trait s

transparent addr region s<mem trait s> sram region;

sram region.trait.kind = SRAM;
sram region.trait.ctype = WB;
sram region.trait.sec level = 0;
sram region.trait.mmio = false;
sram_region.size = 4096;
sram_region.addr = 0x400;

(void) sys mem.add region(sram region);

// add other regions
//

Example 364—DSL: Address space with trait

24.2.3 Address space regions

An address space may be composed of regions. Regions map to parts of an address space. A region may be
characterized by values assigned to address space traits. Traits define properties of a region. Specific
constraints are placed on address claim traits to allocate addresses from regions with desired characteristics.
Regions with trait values that satisfy the claim's trait constraints are the candidate matching regions. An
address claim may span more than one region that satisfies claim trait constraints.

Address space regions are part of the static component hierarchy. The add region and
add nonallocatable region functions (see 24.2.1.2.1 and 24.2.1.2.2) may only be called in exec
init_down and init_up blocks.

24.2.3.1 Base region type

addr_region_base_s is the base type for all address space regions (see Syntax 183).

struct addr region base s {
bit[64] size;
}i

Syntax 183—DSL: Base address region type

Copyright © 2021 Accellera. All rights reserved.
433

Portable Test and Stimulus Standard 2.0 — April 2021

24.2.3.2 Contiguous address regions

The addr_region_s type represents a region in contiguous address space (see Syntax 184). The region type is
fully characterized by the template TRAIT parameter value and the size attribute of the base region type.

struct addr region_ s <struct TRAIT : addr trait s = empty addr trait s>
addr region base s {
TRAIT trait;
b

Syntax 184—DSL: Contiguous address space region type

The values of the trait struct attributes describes the contiguous address region. The PSS tool will match the
trait attributes of regions to satisfy an address claim as described in 24.3. See an example of trait attribute
setting in 24.3.7.

24.2.3.3 Transparent address regions
The transparent addr region_s type defines a fransparent region over a contiguous address
space. Transparent means that the region’s start (lower) address is known to the PSS tool for solve-time

resolution of a claim address within the address space.

The addr field of this region is assigned the start address of the region. The end address of the region is the
calculated value of the expression: addr + size - 1.

See Example 364 where a transparent region is added to a transparent address space.

struct transparent addr region_s
<struct TRAIT : addr_ trait s = empty addr trait s>
addr region s<TRAIT> ({
bit[64] addr;
b

Syntax 185—DSL: Transparent region type

24.3 Allocation within address spaces

The PSS input model can allocate storage atoms from an address space for the exclusive use of certain
behaviors. For example, a DMA controller action might allocate a buffer in system memory for output data.

All address space allocations are done in the declarative domain of a PSS input model. An address claim
struct, defined in the following sections, is used for allocation.

An instance of an address claim struct describes an address claim on an address space. A claim is matched to
the address space nearest in the component instance tree, whose trait type matches the claim trait type (see
24.3.6). A claim is satisfied by allocation from a region (or regions) whose trait value satisfies the
constraints on the claim trait (see 24.3.4).

A claim struct can be instantiated under an action, a flow object or resource object, or any of their nested
structs. The declaration of a claim struct instance causes allocation to occur when the declaring object is
instantiated or the action is traversed.

Copyright © 2021 Accellera. All rights reserved.
434

Portable Test and Stimulus Standard 2.0 — April 2021

24.3.1 Base claim type

The addr_claim base_s struct (see Syntax 186) is the base type for all address space claims.

struct addr claim base s {
rand bit[64] size;
rand bool permanent;
constraint default permanent == false;

b

Syntax 186—DSL: Base address space claim type

24.3.2 Contiguous claims

An address claim can be made on a contiguous address space by declaring a struct of type
addr_claim_s. This claim is also known as an opaque claim. The absolute address of the claim is not
assumed to be known at solve time.

This standard does not define any method by which the PSS tool might resolve address claims at solve time
or might generate code for runtime allocation. One possible method could be PSS tool-specific APIs for
solve-time and runtime allocation. The address space handle obtained from a claim shall fall within a region
or regions whose traits satisfy the claim constraints.

An address claim in contiguous address space is always a contiguous chunk of addresses, potentially
spanning multiple regions that are adjacent.

An address claim can be made on transparent (described below, in 24.3.3) or non-transparent address spaces.

struct addr claim s <struct TRAIT : addr trait s = empty addr trait s>
addr claim base s {
rand TRAIT trait;
rand bit[64] in [64'd2**0, 64'd2**1, 64'd2**2, 64'd2**3 , 64'd2**4
64'd2**5 , 64'd2**6 , 64'd2**7 , 64'd2**8 , 64'd2**9 , 64'd2**10,
64'd2**11, 64'd2**12, 64'd2**13, 64'd2**14, 64'd2**15, 64'd2**1le6,
64'd2**17, 64'd2**18, 64'd2**19, 64'd2**20, 64'd2**21, 64'd2**22,
64'd2**23, 64'd2**24, 64'd2**25, 64'd2**26, 64'd2**27, 64'd2**28,
64'd2**29, 64'd2**30, 64'd2**31, 64'd2**32, 64'd2**33, 64'd2**34,
64'd2**35, 64'd2**36, 64'd2**37, 64'd2**38, 64'd2**39, 64'd2**40,
64'd2**41, 64'd2**42, 64'd2**43, 64'd2**44, 64'd2**45, 64'd2**4e6,
64'd2**47, 64'd2**48, 64'd2**49, 64'd2**50, 64'd2**51, 64'd2**52,
64'd2**53, 64'd2**54, 64'd2**55, 64'd2**56, 64'd2**57, 64'd2**58,
64'd2**59, 64'd2**60, 64'd2**6l, 64'd2**62, 64'd2**63] alignment;

Syntax 187—DSL: Contiguous address space claim type

The alignment attribute specifies the address alignment of the resolved claim address.
24.3.3 Transparent claims

A claim of type transparent_addr claim_ s (see Syntax 188) is required to make a transparent
claim on a transparent contiguous address space. A transparent claim is characterized by the absolute
allocation address attribute (addr) of the claim. A transparent claim is associated with the nearest address
space with the same trait type, in the same way that a non-transparent claim is. However, a transparent claim

Copyright © 2021 Accellera. All rights reserved.
435

Portable Test and Stimulus Standard 2.0 — April 2021

that is thereby associated with a non-transparent space shall be flagged as an error. The PSS tool has all the
information at solve time about the transparent address space necessary to perform allocation within the
limits of the address space. More details about allocation and claim lifetime can be found in the following
section.

The addr field of this claim type can be used to put a constraint on an absolute address of a claim.

struct transparent addr claim s
<struct TRAIT : addr_trait_s = empty addr_trait_ s>
addr claim s<TRAIT> {
rand bit[64] addr;
i

Syntax 188—DSL: Transparent contiguous address space claim type

Example 365 illustrates how a transparent claim is used. A transparent address claim is used in action
my op. A constraint is placed on the absolute resolved address of the claim. This is possible only because of
the transparent address space that contain transparent regions where the base address of the region is known
at solve time.

component pss_top {
transparent addr space c<> mem;

action my op {
rand transparent addr claim s<> claim;
constraint claim.size == 20;

// Constraint on absolute address
constraint claim.addr & 0x100 == 0x100;
}i

exec init up {
transparent addr region s<> regionl, region2;
regionl.size = 50;
regionl.addr = 0x10000;
(void)mem.add region(regionl);

region2.size 10;
region2.addr = 0x20000;
(void)mem.add region(region2);

Example 365—DSL: Transparent address claim

24.3.4 Claim trait semantics

Constraints placed on the trait attribute of a claim instance must be satisfied by the allocated addresses.
Allocated addresses shall be in regions whose trait values satisfy claim trait constraints.

See an example in 24.3.7.

Copyright © 2021 Accellera. All rights reserved.
436

Portable Test and Stimulus Standard 2.0 — April 2021

24.3.5 Allocation consistency

An address claim struct is resolved to represent the allocation of a set of storage atoms from the nearest
storage space, for the exclusive use of actions that can access the claim attribute. In the case of a contiguous
address space, the set is a contiguous segment, from the start address to the start address + size - 1. All
addresses in the set are uniquely assigned to that specific instance of the address claim struct for the duration
of its lifetime, as determined by the actions that can access it (see details below). Two instances of an
address claim struct shall resolve to mutually exclusive sets of addresses if

Both are taken from the same address space, and

— An action that has access to one may overlap in execution time with an action that has access to the
other.

The number of storage atoms in an allocation is represented by the attribute size.
The start address is represented directly by the attribute addr in transparent_addr claim s<>, or
otherwise obtained by calling the function addr_value () on the address space handle returned by

make handle from claim().

Following is the definition of the lifetime of scenario entities:

Table 26—Scenario entity lifetimes

Entity Lifetime

Atomic action From the time of exec body entry (immediately before executing the first statement) to the
time of the exec body exit (immediately after executing the last statement).

Compound action | From the start time of the first sub-action(s) to the end time of the last sub-action(s).

Flow object From the start time of the action outputting it (for the initial state, the start time of the first
action in the scenario) to the end time of the last action(s) inputting it (if any) or the end-
time of the last action outputting it (if no action inputs it).

Resource object From the start time of the first action(s) locking/sharing it to the end time of the last
action(s) locking/sharing it.

Struct Identical with the entity that instantiates it.

The lifetime of the allocation to which a claim struct resolves, and hence the exclusive use of the set of
addresses, may be extended beyond the scenario entity in which the claim is instantiated in one of two ways:

A handle that originates in a claim is assigned to entities that have no direct access to the claim in
solve execs (for definition of address space handles, see 24.4.3). For example, if an action assigns a
handle field (of type addr_handle_t) of its output buffer object with a handle it obtained from
its own claim, the allocation lifetime is extended to the end of the last action that inputs that buffer
object.

— The attribute permanent is constrained to t7ue, in which case the lifetime of the claim is extended
to the end of the test.

Copyright © 2021 Accellera. All rights reserved.
437

Portable Test and Stimulus Standard 2.0 — April 2021

24.3.5.1 Example

The example below demonstrates how the scheduling of actions affects possible resolutions of address
claims. In this model, action my op claims 20 bytes from an address space, in which there is one region of
size 50 bytes and another of size 10. In action testl, the three actions of type my op are scheduled
sequentially, as the iterations of a repeat statement. No execution of my op overlaps in time with another,
and therefore each one can be allocated any set of consecutive 20 bytes, irrespective of previous allocations.
Note that all three allocations must come from the 50-byte region, as the 10-byte region cannot fit any of
them. In test2, by contrast, the three actions of type my op expanded from the replicate statement are
scheduled in parallel. This means that they would overlap in execution time, and therefore need to be
assigned mutually exclusive sets of addresses. However, such allocation is not possible out of the 50 bytes
available in the bigger region. Here too, the smaller region cannot fit any of the three allocations. Nor can it
fit part of an allocation, because it is not known to be strictly contiguous with the other region.

component pss top {
action my op {
rand addr_claim s<> claim;
constraint claim.size == 20;
}i

contiguous addr space c<> mem;

exec init up {
addr region s<> regionl, region2;

regionl.size = 50;
(void)mem.add region(regionl);
region2.size = 10;

(void)mem.add region(region2);

action testl {
activity {
repeat (3) {
do my op; // OK — allocations can be recycled
}
}
}i

action test2 {
activity {
parallel {
replicate (3) {
do my op; // error - cannot satisfy concurrent claims

Example 366—DSL: Address space allocation example

Copyright © 2021 Accellera. All rights reserved.
438

Portable Test and Stimulus Standard 2.0 — April 2021

24.3.6 Rules for matching a claim to an address space

a) A claim is associated with a unique address space based on the static structure of the model.
b) A claim is resolved to an address space that:
1) matches the trait type of the claim

2) s instantiated in a containing component of the current scenario entity (the context compo-
nent hierarchy of an action or the container component of a flow/resource object pool)

3) is nearest in the component hierarchy going up from the context component to the root com-
ponent

¢) It shall be an error if more than one address space in the same component hierarchy matches a
claim.

24.3.7 Allocation example

In following example, pss_top has instances of the sub_ip and great ip components. sub ip is
composed of the good_ip and great ip components. good ip and great ip allocate space with
traitmem trait s. Memory allocation in the top gr ip instance of pss_top will be matched to the
sys_mem address space that is instantiated in pss_top. Memory claims in gr_ip and go ip from
pss_top.sub_system will be matched to the address space in sub_ip, as the sub_ip address_space
will be the nearest space with a matching trait in the component tree.

Note how within the two address spaces, there are regions with the same base address. Claims from actions
of the two instances of great ip may be satisfied with overlapping addresses even if they are concurrent,
since they are taken out of different address spaces.

Copyright © 2021 Accellera. All rights reserved.
439

Portable Test and Stimulus Standard 2.0 — April 2021

import addr reg pkg::*;
import mem pkg::*;

package mem pkg {
enum cache attr e {UC, WB, WT, WC, WP};

struct mem trait s : addr_ trait s {
rand cache attr e ctype;
rand int in [0..3] sec level;

bi
component good ip {
action write mem {
// Allocate from nearest address space that matches TRAIT type and value

rand transparent addr claim s<mem trait s> mem claim;

constraint mem claim.size == 128;
constraint mem claim.trait.ctype == UC;

b

component great ip {
action write mem {

// Allocate from nearest address space that matches TRAIT type and value
rand transparent addr claim s<mem trait s> mem claim;

constraint mem claim.size == 256;
constraint mem claim.trait.ctype == UC;

}i
component sub ip {

// Subsystem has its own address space
transparent addr space c<mem trait s> mem;

good ip go_ ip;
great ip gr ip;

Example 367—DSL: Address space allocation example

Copyright © 2021 Accellera. All rights reserved.
440

Portable Test and Stimulus Standard 2.0 — April 2021

component pss_ top {
sub_ip sub system;
great ip top gr ip;

transparent addr space c<mem trait s> sys mem;

exec init up {
transparent addr region s<mem trait s> region;

region.size = 1024;
region.addr = 0x8000;
region.trait.ctype = UC;
region.trait.sec level = 0;

transparent addr region s<mem trait s> great region;

great region.size 1024;
great region.addr 0x8000;
great region.trait.ctype = UC;
great region.trait.sec level = 2;

(void) sys mem.add region (region);

(void) sub system.mem.add region(great region);
}i
}i

Example 367—DSL: Address space allocation example (cont.)

24.4 Data layout and access operations
24.4.1 Data layout

Many PSS use cases require writing structured data from the PSS model to byte-addressable space in a well-
defined layout. In PSS, structured data is represented with a struct. For example, a DMA engine might
expect DMA descriptors that encapsulate DMA operation to be in memory in a known layout. Packed
structs may be beneficial to represent bit fields of hardware registers.

The built-in PSS library struct packed_s is used as a base struct to denote that a PSS struct is packed.
Any struct derived from built-in struct packed_s directly or indirectly is considered packed by the PSS

tool. Packed structs are only allowed to have fields of numeric types, packed struct types, or arrays thereof.
Following are the declarations of the endianness enum and packed struct in addr_reg_pkg:

enum endianness e {LITTLE ENDIAN, BIG ENDIAN};

struct packed s <endianness e e = LITTLE ENDIAN> {};
Syntax 189—DSL: packed_s base struct

24.4.1.1 Packing rule

PSS uses the de facto packing algorithm from the GNU C/C++ compiler. The ordering of fields of structs
follows the rules of the C language. This means that fields declared first would go in lower addresses. The

Copyright © 2021 Accellera. All rights reserved.
441

Portable Test and Stimulus Standard 2.0 — April 2021

layout of fields in a packed struct is defined by the endianness template parameter of the packed struct. Bit
fields in PSS structs can be of any size.

For the packing algorithm, a register of size N bytes is used, where N*§ is greater than or equal to the
number of bits in the packed struct.

For big-endian mode, fields are packed into registers from the most significant bit (MSB) to the least
significant bit (LSB) in the order in which they are defined. Fields are packed in memory from the most
significant byte (MSbyte) to the least significant byte (LSbyte) of the packed register. If the total size of the
packed struct is not an integer multiple of bytes, don't-care bits are added at the LSB side of the packed
register.

For little-endian mode, fields are packed into registers from the LSB to the MSB in the order in which they
are defined and packed in memory from the LSbyte to the MSbyte of the packed register. If the total size of
the packed struct is not an integer multiple of bytes, don't-care bits are added at the MSB side of the packed
register.

24.4.1.2 Little-endian packing example

A packed struct is shown in Example 368. This struct has 30 bits. A register for packing this struct would
have 4 bytes.

struct my packed struct : packed s<LITTLE_ENDIAN> {
bit[6] A;
bit[2] B;
bit[9] C;
bit[7] D;
bit[6] E;
}

Example 368—DSL: Packed PSS little-endian struct

Register packing will start from field A. The least significant bit of A would go in the least significant bit of
the register, as shown in Figure 20. Field B would go after field A. The least significant bit of B would go in
the lowest bit after A in the packed register, and so on. The layout of the packed struct in byte-addressable
space is shown in Figure 21. (X means “don’t-care bit” in Figure 20 and Figure 21.)

MSB LSB
XXEEEEEEDDDDDDDCCCCCCCCCBBAAAAAA
XX543210654321087654321010543210

Figure 20—L.ittle-endian struct packing in register

byte 0 byte 1 byte 2 byte 3
BBAAAAAA CCCCCCCC DDDDDDDC XXEEETETEE
10543210 76543210 65432108 XX543210

Figure 21—Little-endian struct packing in byte-addressable space

Copyright © 2021 Accellera. All rights reserved.
442

Portable Test and Stimulus Standard 2.0 — April 2021

24.4.1.3 Big-endian packing example

A packed struct is shown in Example 369. This struct has 30 bits. A register for packing this struct would
have 4 bytes.

struct my packed struct : packed s<BIG ENDIAN> {
bit[6] A;
bit[2] B;
bit[9] C;
bit[7] D;
bit[6] E;
}

Example 369—DSL: Packed PSS big-endian struct

Register packing will start from field A. The most significant bit of A would go in the most significant bit of
the register, as shown in Figure 22. Field B would go after field 2. The most significant bit of B would go in
the highest bit after A in the packed register, and so on. The layout of the packed struct in byte-addressable
space is shown in Figure 23. (X means “don’t-care bit” in Figure 22 and Figure 23.)

MSB LSB
AAAAAABBCCCCCCCCCDDDDDDDETEEETETEZXHX
543210108765432106543210543210XX

Figure 22—Big-endian struct packing in register

byte 0 byte 1 byte 2 byte 3
AAAAAABB CCCCCCCCC DDDDDDD EEEEEEZXHX
54321010 876543210 6543210 543210ZXX

Figure 23—Big-endian struct packing in byte-addressable space
24.4.2 sizeof_s
The template struct sizeof_s is used to query the physical storage size of a PSS data type. It applies to
types that can be written to or read from a byte-addressable address space, namely scalars, packed structs,

and arrays thereof.

24.4.2.1 Definition

struct sizeof s<type T> {
static const int nbytes = /* implementation-specific */;
static const int nbits = /* implementation-specific */;

}i

Syntax 190—DSL: sizeof s struct

The static constant nbytes is initialized to the number of consecutive addresses required to store a value of
type T in a byte-addressable address space. When using the read/write target functions (see 24.4.6), this
number of bytes is assumed to be taken up by the data in the target storage. For types that are not byte-

Copyright © 2021 Accellera. All rights reserved.
443

Portable Test and Stimulus Standard 2.0 — April 2021

aligned in size, the number of bytes is rounded up. For the definition of packed struct layout in an address
space, see 24.4.1.

The static constant nbi ts is initialized to the exact number of bits that are taken up by the representation of
a value of type T in a byte-addressable address space.

sizeof s<> shall not be parameterized with types other than scalars, packed structs, and arrays thereof.
24.4.2.2 Examples

The following code snippets show the value of nbytes of sizeof s<> instantiated for several different
types:

sizeof s<int>::nbytes ==

sizeof s<int[3:0]>::nbytes ==

sizeof s<bit>::nbytes == 1
sizeof s<bit[33]>::nbytes == 5
sizeof s<array<int,10>>::nbytes == 40

struct my packed s : packed s<> {bit[2] kind; int data;};
sizeof s<my packed s>::nbytes == 5

24.4.3 Address space handles

The built-in package addr_reg_pkg defines PSS types for address space handles.

typedef chandle addr handle t;
const addr handle t nullhandle = /* implementation-specific */;

struct sized addr handle s < int Sz, // in bits
int 1sb = O,
endianness_e e = LITTLE ENDIAN
> : packed s<e> {
addr handle t hndl;
i

Syntax 191—DSL: Address space handle

24.4.3.1 Generic address space handle

addr_handle_t is the generic type for address handles within an address space. A variable of type
addr_handle_t resolves to a concrete address value during test execution, on the target platform.
However, the concrete value of an address handle cannot be obtained during the solve process, on the solve
platform. A field of type addr_handle_t cannot be declared directly in a packed struct type. Packed
structs are defined in 24.4.1.

24.4.3.2 nullhandle

nullhandle represents the address value 0 within the target address space, regardless of the actual
mapping of regions.

Copyright © 2021 Accellera. All rights reserved.
444

Portable Test and Stimulus Standard 2.0 — April 2021

24.4.3.3 sized address space handle

The wrapper struct sized _addr_handle_s is used for specifying the size of an address handle in a
packed struct. An address field within a packed struct shall only be declared using
sized addr_ handle_s, and not directly as a field of type addr_handle_t.

The SZ parameter specifies the size of the handle itself in bits when used in a packed struct. Note that the SZ
parameter is not the size of the data it is pointing to.

The 1sb parameter defines the starting bit in the resolved address that would become bit 0 of sized address
handle in packed struct. For example, assume that the resolved address is 64 bits and the size of the handle is
30 bits, with the the 1sb parameter set to 2. In this case, a sized handle in a packed struct would have bits 31
to 2 from the resolved address.

See an example in 24.4.7.
24.4 .4 Obtaining an address space handle

A handle in an address space can be created from an address claim (with an optional offset value), from
another handle (with an offset value), or from a region in an address space. An address claim is made using
a claim struct declaration in actions and objects.

Some address space regions are non-allocatable. These regions can be used to represent memory-mapped
/O (MMIO) register spaces. A handle can be created from a region in an address space, in order to access
non-allocatable regions.

A handle to a region is obtained when the region is added to the address space, using the add_region (see
24.2.1.2.1) or add _nonallocatable region (see 24.2.1.2.2) functions. To create address handles
from address claims or from other handles, the following functions are defined in the built-in package
addr_reg pkg.

24.4.4.1 make_handle_from_claim function

The function make_handle from claim() creates an address handle from a claim, with an optional
offset value.

function addr handle t make handle from claim
(addr _claim base s claim, bit[64] offset = 0);

Syntax 192—DSL: make _handle_from_claim function

The make _handle from claim function arguments are:
— A claim struct instance declared in an action or a flow/resource object

— An optional offset value, of a 64-bit type

The returned handle's resolved address will be the sum of the claim’s resolved address and the offset. The
return value of the function is of type addr_handle_t.

Copyright © 2021 Accellera. All rights reserved.
445

Portable Test and Stimulus Standard 2.0 — April 2021

24.4.4.1.1 Example

action my action {
rand transparent addr claim s<> claim;

constraint claim.size == 128;
constraint claim.alignment == 2**4;

exec body {
int offset = 16;
int data = 128;

addr _handle t hO = make handle from claim(claim);
write32 (h0, data); // access API defined in 24.4.6.1

// Address handle from claim with an offset
addr _handle t hl = make handle from claim(claim, offset);
write32 (hl, data);

Example 370—DSL: make _handle_from_claim example

24.4.4.2 make_handle_from_handle function

The function make_handle from handle () creates an address handle from another handle, given an
offset.

function addr handle t make handle from handle
(addr_handle t handle, bit[64] offset);

Syntax 193—DSL: make _handle_from_handle function

The make handle from_ handle function arguments are:
— A handle that was created by a different call to a make_handle function

— An offset value, of a 64-bit type

The returned handle's resolved address will be the sum of the handle parameter’s resolved address and the
offset. The return value of the function is of type addr_handle_t.

Copyright © 2021 Accellera. All rights reserved.
446

Portable Test and Stimulus Standard 2.0 — April 2021

24.4.4.2.1 Example

action my action {
transparent addr claim s<> claim;
constraint claim.alignment == 2**4;

exec body {
int offset = 16;
int data = 128;

addr handle t hO = make handle from claim(claim, offset);
write32 (h0, data);

// Make handle from another handle with an offset
addr handle t hl = make handle from handle (h0, sizeof s<int>::nbytes);
write32 (hl, data);

Example 371—DSL: make handle_from_handle example

24.4.5 addr_value function

The function addr_walue () returns the resolved address of the parameter handle, as a numeric value.
addr_value () is a target function and shall only be used in exec body, run_start, run_end, or functions
called from these exec blocks.

function bit[64] addr value (addr handle t hndl);
import target function addr value;

Syntax 194—DSL: addr_value function

24.4.6 Access operations

Read/write operations of PSS data from/to byte-addressable address space are defined as a set of target
functions. Target exec blocks (exec body, run_start, run_end), and functions called from them, may call
these core library functions to access allocated addresses.

Access functions use an address handle to designate the required location within an address space.

PSS provides a way to customize the implementation of access functions for different executors (see
24.4.6.5).

24.4.6.1 Primitive read operations

Syntax 195 defines read operations for numeric types from byte addressable address spaces to read one,
two, four or eight consecutive bytes starting at the address indicated by the addr_handle_t argument.

function bit[8] read8 (addr_handle t hndl);
function bit[16] readl6(addr handle t hndl);
function bit[32] read32(addr handle t hndl)

function bit[64] read64 (addr handle t hndl);

Syntax 195—DSL: Primitive read operations for byte addressable spaces

’

Copyright © 2021 Accellera. All rights reserved.
447

Portable Test and Stimulus Standard 2.0 — April 2021

The first byte goes into bits [7:0], then the next byte goes into bits [15:8], and so on.
24.4.6.2 Primitive write operations
Syntax 196 defines write operations for numeric types to byte addressable address spaces to write one, two,

four or eight consecutive bytes from the data argument starting at the address indicated by the
addr_handle_t argument.

function void write8 (addr handle t hndl, bit([8] data) ;
function void writel6 (addr handle t hndl, bit[l6] data);
function void write32(addr handle t hndl, bit[32] data);
function void write64 (addr handle t hndl, bit[64] data);

Syntax 196—DSL: Primitive write operations for byte addressable spaces

Bits [7:0] of the input data go into the starting address specified by the addr_handle_ t argument, bits
[15:8] go into the next address (starting address + 1), and so on.

24.4.6.3 Read and write N consecutive bytes

Syntax 197 defines operations to read and write a series of consecutive bytes from byte addressable space.
For a read operation, the read data is stored in the argument data. For function read bytes (), the
size argument indicates the number of consecutive bytes to read. The returned list is resized accordingly,

and its previous values, if any, are overwritten.

For a write operation, the input data is taken from the argument data. For function write bytes (), the
number of bytes to write is determined by the list size of the data parameter.

function void read bytes (addr handle t hndl, list<bit[8]> data, int size);
function void write bytes(addr handle t hndl, list<bit[8]> data);

Syntax 197—DSL: Read and write series of bytes

The first byte read comes from the address indicated by the hnd1 argument. This byte is stored at the first
location (index 0) in the data list. The second byte comes from the address incremented by one and is
stored at the second location (index 1) in the data list, and so on. The same semantics apply to
write bytes().

24.4.6.4 Read and write packed structs
Read and write operations to access packed structs are defined in Syntax 198. Argument packed struct

of functions read _struct() and write_struct () shall be a subtype of the packed_s struct. The
packed struct argument is read from or written to the address specified by the hnd1l argument.

function void read struct (addr handle t hndl, struct packed struct);
function void write struct (addr handle t hndl, struct packed struct);

Syntax 198—DSL: Read and write packed structs

The PSS implementation shall convert calls to read struct () and write_struct () to one or more
invocations of the primitive read and write operations (see 24.4.6.1 and 24.4.6.2). Reading and writing of

Copyright © 2021 Accellera. All rights reserved.
448

Portable Test and Stimulus Standard 2.0 — April 2021

structs of up to 64 bits stored at a correspondingly aligned address shall be implemented with a single
primitive operation, and in other cases may be partitioned into multiple operations of any size.

24.4.6.5 Executor-based customization of read/write functions

PSS tools may provide built-in implementations of read and write operations for mainstream execution
contexts. However, users can optionally customize the implementation of these operations for their own
purposes and execution contexts.

Calls to primitive read/write functions (defined above in 24.4.6.1 and 24.4.6.2), and calls to byte list read/
write functions (defined above in 24.4.6.3), are delegated to functions with the identical prototype in the
executor instance assigned to the evaluation action or flow/resource object. Syntax 199 below shows the
declarations of the executor implementation functions.

extend component executor base c {
function bit[8] read8 (addr _handle t hndl
function bit[16] readl6(addr handle t hndl
function bit[32] read32(addr handle t hndl
function bit[64] read64 (addr_handle t hndl

’
’

’

’

)
)
)
)

function void write8 (addr handle t hndl, bit([8] data) ;

function void writel6 (addr handle t hndl, bit[1l6] data);
()
()

’

function void write32(addr handle t hndl, bit[32] data
function void write64 (addr handle t hndl, bit[64] data

’

function void read bytes (addr handle t hndl, list<bit[8]> data,
int size);
function void write bytes(addr handle t hndl, list<bit([8]> data);

Syntax 199—DSL: Primitive operation implementation functions

Note that struct read/write functions (defined above in 24.4.6.4) and register read/write functions (defined
below in 24.5.1) are implemented in terms of their respective primitive operations. Therefore, custom
implementations of the primitive operations in an executor apply similarly to struct and register read/write
functions.

The code in Example 372 below illustrates how a PSS implementation may define the delegation of one of
the primitive read/write functions to the corresponding function in the current executor. The actual
implementation does not necessarily take this form, but should have equivalent observable behavior. See
24.1.2.5 for more on the semantics of function executor ().

function bit[32] read32(addr handle t hndl) {

if (executor () != null) {
return executor () .read32 (hndl);
} else {

// return value per default implementation

Example 372—DSL: lllustration of read32()

Example 373 below demonstrates how primitive operations read32 () and write32 () are mapped to
calls to functions of a C bus transactor in the context of a user-defined executor type.

Copyright © 2021 Accellera. All rights reserved.
449

Portable Test and Stimulus Standard 2.0 — April 2021

function bit[32] my transactor read word(bit[64] addr);
import target C function my transactor read word;

function void my transactor write word(bit[64] addr, bit[32] data);
import target C function my transactor write word;

component my transactor executor c<struct TRAIT : executor trait s =
empty executor trait s> : executor c<TRAIT> ({
function bit[32] read32(addr handle t hndl) {
return my transactor read word(addr value (hndl));

}

function void write32 (addr handle t hndl, bit[32] data) {
my transactor write word(addr value (hndl), data);
}
}i

Example 373—DSL: Mapping of primitive operations to foreign C functions

In Example 374 below, executor type uvm_ubus_executor c corresponds to a UVM bus master. The
write8 () function is defined in terms of a SystemVerilog imported function (task) that starts a write-byte
sequence on the agent designated by the path parameter. The executor type is instantiated twice under
pss_top, and each instance is associated with a different UVM agent in the target environment using the
UVM path.

import target SV function void ubus write8(string uvm path, bit[64] addr,
bit[8] data):

component uvm ubus_ executor c : executor c<bus trait s> {
string uvm path;

function void write8 (addr handle t hndl, bit[8] data) ({
ubus write8 (uvm path, addr value (hndl), data);
}
i

extend component pss top {
uvm_ubus_ executor c masters[2];
executor group c<bus trait s> bus group;
exec init down {
foreach (m: masters) {
bus group.add executor (m);
}
masters[0] .uvm path = "uvm test top.env.ubus master(0";
masters([1l].uvm path = "uvm test top.env.ubus masterl";
}
}i

Example 374—DSL: Mapping of primitive operations to UVM sequences

In Example 375 below, an executor corresponding to a 32-bit architecture CPU customizes the read64 ()
and write64 () operations to be implemented in terms of the built-in read32 () and write32()
operations.

Copyright © 2021 Accellera. All rights reserved.
450

Portable Test and Stimulus Standard 2.0 — April 2021

component my 32bit _cpu_c : executor_c<my core trait s> {
function bit[64] read64 (addr handle t hndl) {
bit[64] result;
result[31: 0] = read32 (hndl);
result[63:32] = read32(make handle from handle (hndl, 4));

return result;

}

function void write64 (addr handle t hndl, bit[64] data) {

write32 (hndl, data[31:0]);
write32 (make handle from handle (hndl,4), data[63:32]);

bi

Example 375—DSL: Implementing primitive operations in terms of other operations

24.4.7 Target data structure setup example

The following example demonstrates use of packed PSS data written to allocations on byte addressable
space. It also demonstrates the use of address handles to construct complex data structures in target memory.

Lifetime of allocation is extended by using address handles in flow objects.

buffer data buff {
rand addr_claim s<> mem seg;

}i
component dma c {

struct descriptor s : packed s<> {
sized addr handle s<32> src_addr;
sized addr handle s<32> dst addr;
int size;
sized addr handle s<32> next descr;
i

state descr chain state {
list<addr handle t> handle list;

}r

pool descr chain state descr chain statevar;
bind descr chain statevar *;

action alloc first descr {
output descr chain state out chain;

rand addr claim s<> next descr mem;
constraint next descr mem.size == sizeof s<descriptor s>::nbytes;

exec post solve {
out chain.handle list.push back/(

make handle from claim(next descr mem));

Example 376—DSL: Example using complex data structures

Copyright © 2021 Accellera. All rights reserved.
451

Portable Test and Stimulus Standard 2.0 — April 2021

action chained xfer ({
input data buff src buff;
output data buff dst buff;
constraint dst buff.mem seg.size == src buff.mem seg.size;

input descr chain state in chain;
output descr chain state out chain;

rand bool last;
descriptor s descr;

rand addr claim s<> next descr mem;
constraint next descr mem.size == sizeof s<descriptor s>::nbytes;

addr handle t descr hndl;
exec post solve {

descr.src_addr.hndl
descr.dst addr.hndl

make handle from claim(src_buff.mem seg);
make handle from claim(dst buff.mem seq);

descr.size = src_buff.mem seg.size;
if (last) {

descr.next descr.hndl = nullhandle;
} else {

descr.next descr.hndl make handle from claim(next descr mem);

// tail of current list
descr hndl = in chain.handle list[in chain.handle list.size()-1];

// copy over list from input to output
out chain.handle list = in chain.handle list;
// add next pointer
out chain.handle list.push back(
make handle from claim(next descr mem)) ;

exec body {
write struct (descr hndl,descr);

}s

action execute xfer ({
input descr chain state in chain;

addr _handle t descr list head;

exec post solve {
descr list head = in chain.handle 1list[0]; // head of list
}

exec body {
// Initiate chained-transfer with descr list head
// Wait for the chained-transfer to complete

i

Example 376—DSL: Example using complex data structures (cont.)

Copyright © 2021 Accellera. All rights reserved.
452

Portable Test and Stimulus Standard 2.0 — April 2021

action multi xfer {
rand int in [1..10] num of xfers;

activity {
do alloc first descr;
repeat (i: num of xfers) ({
do chained xfer with {last == (i == num of xfers-1);};
}

do execute xfer;

Example 376—DSL: Example using complex data structures (cont.)

In this example, the chained xfer action represents the data flow (source/destination buffers)
associated with this transaction. It populates the descriptor, including a pointer to the next descriptor, which
it allocates. Its runtime execution writes the full descriptor out to memory, in the location allocated for it by
the previous link in the chain.

24.5 Registers

A PSS model will often specify interaction with the hardware SUT to control how the PSS tool-generated
code will read/write to programmable registers of the SUT. This section shows how to associate meaningful
identifiers with register addresses that need to be specified in the PSS model description, as well as
manipulation of the value of register fields by name.

All the core library constructs in this section are declared in the addr_reg_pkg package. For brevity, the
definitions below do not include the package name.

24.5.1 PSS register definition
A register is a logical aggregation of fields that are addressed as a single unit.

The reg_c component is a base type for specifying the programmable registers of the DUT. Note that it is
a pure component (see 10.7). It shall be illegal to extend the reg_c class.

Copyright © 2021 Accellera. All rights reserved.
453

Portable Test and Stimulus Standard 2.0 — April 2021

enum reg access {READWRITE, READONLY, WRITEONLY};

pure component reg c < type R,
reg access ACC = READWRITE,
int SZ = (8*sizeof s<R>::nbytes)> {

function R read(); // Read register as type R
import target function read;

function void write (R r); // Write register as type R
import target function write;

function bit[SZ] read val(); // Read register value as bits
import target function read val;

function void write val(bit[SZ] r); // Write register value as bits
import target function write val;

Syntax 200—DSL: PSS register definition

Component reg_c is parameterized by:

a) A type R for the value (referred to as the register-value type) that can be read/written from/to the
register, which can be:

1) A packed structure type (that represents the register structure)
2) A bit-vector type (bit[N])
b) Kind of access allowed to the register, which by default is READWRITE

¢) Width of the register (SZ) in number of bits, which by default equals the size of the register-value
type R (rounded up to a multiple of 8)

Sz, if specified by the user, shall be greater than or equal to the size of the register-value type R. If the size
of the register-value type R is less than the width of the register, it will be equivalent to having
SZ - sizeof_ s<R>::nbits reserved bits at the end of the structure.

The read()/read val ()/write()/write_val () functions may be called from the test-realization
layer of a PSS model. Being declared as target functions, these need to be called in an exec body context.

The read () and read_val () functions return the value of the register in the DUT (the former returns an
instance of register-value type and the latter returns a bit vector). The write () and write val()
functions update the value of a register in a DUT (the former accepting an instance of register-value type and
the latter a bit vector). If the register-value type is a bit vector, then the functions read() and
read val () are equivalent, as are write () and write_val().

See 24.5.4 for a description of the implementation of these functions. It shall be an error to call read () and
read _val () on aregister object whose access is set to WRITEONLY. It shall be an error to call write ()
and write_val () on aregister object whose access is set to READONLY.

A template instantiation of the class reg_c (i.e., reg_c<R, ACC, SZ> for some concrete values for R,
ACC and SZz) or a component derived from such a template instantiation (directly or indirectly) is a register
type. An object of register type can be instantiated only in a register group (see 24.5.2).

Copyright © 2021 Accellera. All rights reserved.
454

Portable Test and Stimulus Standard 2.0 — April 2021

Example 377 shows examples of register declarations.

struct my reg(l s : packed s<> { (1)
bit [1le6] f£1d0;
bit [16] f1dl;

i

pure component my reg0 c : reg c<my reg0 s> {} // (2)

struct my regl s : packed s<> {

bit £1d0;
bit [2] f1d1;
bit [2] f1d2[5]; // (3)

}i

pure component my regl c : reg c<my regl s, READWRITE, 32> {} // (4)

Example 377—DSL: Examples of register declarations

Notes:
1) my reg0O_s is the register-value type. The endianness can be explicitly specified if needed.

2) my reg0_c is the register type. Since it derives from reg_c<my reg0 s>, it inherits the
reg_c read/write functions. Note that the access is READWRITE by default and the width
equals the size of the associated register-value type, my reg0_s.

3) Fixed-size arrays are allowed.

4) sizeof s<my regl s>::nbits = 13, which is less than the specified register width
(32). This is allowed and is equivalent to specifying a field of size 32 — 13 = 19 bits after
£1d2[5]. This reserved field cannot be accessed using read () /write () functions on the
register object. In the numeric value passed to write_wal () and in the return value of
read_val (), the value of these bits is not defined by this standard.

It is recommended to declare the register type as pure. This allows the PSS implementation to optimally
handle large static register components.

24.5.2 PSS register group definition
A register group aggregates instances of registers and of other register groups.

The reg_group_c component is the base type for specifying register groups. Note that it is a pure
component (see 10.7). It shall be illegal to extend the reg_group_c class.

Copyright © 2021 Accellera. All rights reserved.
455

Portable Test and Stimulus Standard 2.0 — April 2021

struct node_ s {
string name;
int index;

i

pure component reg group c {
pure function bit[64] get offset of instance(string name);
pure function bit[64] get offset of instance array(string name,
int index):;
pure function bit[64] get offset of path(list<node s> path);

function void set handle (addr handle_ t addr);
import solve function set handle;

Syntax 201—DSL: PSS register group definition

A register group may instantiate registers and instances of other register groups. An instance of a register
group may be created in another register group, or directly in a non-register-group component. In the latter
case, the register group can be associated with an address region. The set_handle () function associates
the register group with an address region. The definition of this function is implementation-defined. See
24.5.3 for more details on use of this function.

Each element in a register group (whether an instance of a register or an instance of another group) has a
user-defined address offset relative to a notional base address of the register group.

The function get_offset of instance() retrieves the offset of a non-array element in a register
group, by name of the element. The function get_offset of instance_array () retrieves the
offset of an array element in a register group, by name of the element and index in the array.

For example, suppose a is an instance of a register group that has the following elements:
— A register instance, r0

— A register array instance, r1 [4]

Calling a.get offset of instance("r0") returns the offset of the element r0. Calling a.
get offset of instance array("rl", 2) returns the offset atindex 2 of element r1.

The function get_offset of path () retrieves the offset of a register from a hierarchical path of the
register, starting from a given register group. The hierarchical path of the register is specified as a list of
node_s objects. Each node_s object provides the name of the element (as a string) and an index
(applicable if and only if the element is of array type). The first element of the list corresponds to an object
directly instantiated in the given register group. Successive elements of the list correspond to an object
instantiated in the register group referred by the predecessor node. The last element of the list corresponds to
the final register instance.

For example, suppose b is an instance of a register group that has the following elements: a register group

array instance grp0[10], which in turn has a register group instance grpl, which in turn has a register
instance, r0. The hierarchical path of register r0 in grpl within grpO [5] within b will then be the list
(e.g., path to r0) with the following elements in succession:

— [0]: node_s object with name = "grp0" and index =5
— [1]:node_s object with name = "grpl" (index is not used)

— [2]:node_s object with name = "r0" (index is not used)

Copyright © 2021 Accellera. All rights reserved.
456

Portable Test and Stimulus Standard 2.0 — April 2021

Calling b.get offset of path(path to r0) will return the offset of register rO relative to the
base address of b.

For a given register group, users shall provide the implementation of either get_offset of path()or
of both functions get offset of instance() and get_offset of instance_array().lIt
shall be an error to provide an implementation of all three functions. These may be implemented as native
PSS functions, or foreign-language binding may be used. These functions (when implemented) shall provide
the relative offset of al/l the elements in the register group. These functions are called by a PSS tool to
compute the offset for a register access (as described later in 24.5.4). Note that these functions are declared
pure —the implementation shall not have side-effects.

Example 378 shows an example of a register group declaration.

}

pure component my reg grp0 c : reg group c {
my readonly reg0 c reg0; // (1)
my regl c regll4]; // (2)
my sub_reg grp c sub; /7 (3)

reg c<my regx_ s, WRITEONLY, 32> regx; // (4)

// May be foreign, too
function bit[64] get offset of instance(string name) {

function bit[64] get offset of instance array(string name, int index) {

match (name) {

["reg0"]: return 0x0;
["sub"]: return 0x20;
["regx"]: return 0x0; // (5)

default: return -1; // Error case

match (name) {
["regl"]: return (0x4 + index*4);
default: return -1; // Error case

Notes:
1)

2)
3)

4)
)

Example 378—DSL: Example of register group declaration

my readonly reg0 c,my regl c, etc., are all register types (declarations not shown in
the example).

Arrays of registers are allowed.

Groups may contain other groups (declaration of my sub_reg grp_ c not shown in the
example).

A direct instance of reg_c<> may be created in a register group.

Offsets of two elements may be same. A typical use case for this is when a READONLY and a
WRITEONLY register share the same offset.

24.5.3 Association with address region

Before the read/write functions can be invoked on a register, the top-level register group (under which the
register object has been instantiated) must be associated with an address region, using the set_handle ()

Copyright © 2021 Accellera. All rights reserved.
457

Portable Test and Stimulus Standard 2.0 — April 2021

function in that register group. This is done from within an exec init_up or init_down context. Only the top-
level register group shall be associated with an address region; it shall be an error to call set_handle ()
on other register group instances. An example is shown in Example 379.

component my component c

{

my reg grp0 ¢ grp0; // Top-level group
transparent addr space c<> sys mem;

exec init up {
transparent addr region s<> mmio region;
addr_handle t h;
mmio region.size 1024;
mmio region.addr = 0xA0000000;

h = sys mem.add nonallocatable region(mmio region);

grp0.set handle (h);

Example 379—DSL: Top-level group and address region association

24.5.4 Translation of register read/write

The PSS implementation shall convert read/read_val/write/write_wal function calls on a register
to invocations of the primitive read/write operations on its associated address (see 24.4.6.1 and 24.4.6.2).
The conversion shall proceed as follows:

a)

b)

The read/write function is selected based on the size of the register. For example, if the size of the
register is 32, the function read32 (addr_handle_ t hndl) will be called for a register read.
The total offset is calculated by summing the offsets of all elements starting from the top-level regis-
ter group to the register itself.

1) If the function get_offset of path() is available in any intermediate register group
instance, the PSS implementation will use that function to find the offset of the register relative
to the register group.

2) Otherwise, the function get offset of instance array () or get off-
set _of instance() isused, depending on whether or not the register instance or register
group instance is an array.

For example, in the expression (where a, b, c, and d are all instances of register groups and reg is
a register object):

comp.a.b.c.d[4].reg.write val(10)
if the function get_offset_of path () is implemented in the type of element c, then the offset
is calculated as:

offset = comp.a.get offset of instance("b") +
comp.a.b.get offset of 1nstance(" "y o+
comp.a.b.c. get_offset_of_path(path)

where pathisthelist [{"d", 4}, {"reg", 0}].

The handle for the access is calculated as make_handle from handle (h, offset), where
h is the handle set using set_handle () on the top- level register group.

Copyright © 2021 Accellera. All rights reserved.
458

Portable Test and Stimulus Standard 2.0 — April 2021

24.5.5 Recommended packaging

It is recommended that all the register (and register group) definitions of a device be placed in a separate file
and in a separate package by themselves, as shown in Example 380.

// In my IP regs.pss
package my IP regs {
import addr reg pkg::*;

struct my reg0 s : packed s<> { ... };
pure component my reg0 c reg c<my reg0O s, READWRITE, 32> { ... };
// ... etc: other registers
pure component my reg group c : reg group c {
my reg0 c r0;
// ... etc: other registers

}i

Example 380—DSL: Recommended packaging

This ensures that the register file can be easily generated from a register specification (e.g., IP-XACT).

Copyright © 2021 Accellera. All rights reserved.
459

Portable Test and Stimulus Standard 2.0 — April 2021

Annex A
(informative)

Bibliography

[B1] IEEE 100, The Authoritative Dictionary of IEEE Standards Terms, Seventh Edition. New York: Insti-
tute of Electrical and Electronics Engineers, Inc.

Copyright © 2021 Accellera. All rights reserved.
460

Portable Test and Stimulus Standard 2.0 — April 2021

Annex B
(normative)

Formal syntax

The PSS formal syntax is described using Backus-Naur Form (BNF). The syntax of the PSS source is
derived from the starting symbol Mode 1. If there is a conflict between a grammar element shown anywhere
in this standard and the material in this annex, the material shown in this annex shall take precedence.

Model ::= { portable stimulus description }

portable stimulus description ::=
package body item
| package declaration
| component_declaration

B.1 Package declarations
package declaration ::= package package id path { { package body item } }
package id path ::= package identifier { :I package identifier }

package body item ::=
abstract action declaration

| struct declaration
| enum declaration
| covergroup declaration
| function decl
| import class decl
| procedural function
| import function
| target template function
| export action
| typedef declaration
| import stmt
| extend stmt

| const field declaration

| component declaration

| package declaration

| compile assert stmt

| package body compile if

| stmt terminator

import stmt ::= import package import pattern ;
package import pattern ::= type identifier [package import qualifier]
package import qualifier ::=

package import wildcard

| package import alias

package import wildcard ::= i *

Copyright © 2021 Accellera. All rights reserved.
461

Portable Test and Stimulus Standard 2.0 — April 2021

package import alias ::= as package identifier

extend stmt ::=
extend action type identifier { { action body item } }
| extend component type identifier { { component body item } }
| extend struct kind type identifier { { struct body item } }

| extend enum type identifier { [enum item { , enum item }] }
const field declaration ::= [static] const data_declaration
stmt terminator ::=

B.2 Action declarations

action declaration ::= action action identifier

[template param decl list] [action super spec] { { action body item } }
abstract action declaration ::= abstractaction declaration
action super spec ::= : type identifier

action body item ::=

activity declaration
override declaration
constraint declaration
action field declaration
symbol declaration
covergroup declaration
exec block stmt

activity scheduling constraint
attr group

compile assert stmt
covergroup instantiation
action body compile if
stmt terminator

activity declaration ::= activity { { [label identifier:] activity stmt } }

action field declaration ::=
attr field
| activity data field
| action handle declaration
| object ref field declaration

object ref field declaration ::=
flow ref field declaration
| resource ref field declaration

flow ref field declaration ::=
(input | output) flow object type object ref field {, object ref field } ;

resource ref field declaration ::=
(lock | share) resource object type object ref field {, object ref field } ;

Copyright © 2021 Accellera. All rights reserved.
462

Portable Test and Stimulus Standard 2.0 — April 2021

flow object type ::=
buffer type identifier
| state type identifier
| stream type identifier
resource object type ::= resource type identifier
object ref field ::= identifier [array dim]

action handle declaration ::= action type identifier action instantiation ;

action instantiation ::=

action identifier [array dim] { , action identifier [array dim] }
activity data field ::= action data declaration
activity scheduling constraint ::= constraint (parallel | sequence)

{ hierarchical id , hierarchical id { , hierarchical id } };

B.3 Struct declarations

struct declaration ::= struct kind struct identifier
[template param decl list] [struct super spec] { { struct body item } }

struct _kind ::=
struct
| object kind

object kind ::=
buffer
| stream
| state
| resource

struct super spec ::= ! type identifier

struct body item ::=
constraint declaration
| attr field
| typedef declaration
| exec block stmt
| attr group
| compile assert stmt
| covergroup declaration
| covergroup instantiation
| struct body compile if
| stmt terminator

Copyright © 2021 Accellera. All rights reserved.
463

Portable Test and Stimulus Standard 2.0 — April 2021

B.4 Exec blocks

exec block stmt ::=
exec block
| target code exec block
| target file exec block
| stmt terminator

exec_block ::= exec exec kind { { exec stmt } }

exec kind ::=
pre_solve

| post_solve

| body

| header

| declaration

| run_start

| run_end

| init_down

| init_up

| init

exec stmt ::=
procedural stmt
| exec super stmt

exec_super_stmt ::= super;
target code exec block ::= exec exec_kind language identifier = string literal;
target file exec block ::= exec file filename string = string literal ;

B.5 Functions

procedural function ::= [platform qualifier] [pure] function
function prototype { { procedural stmt } }

function decl ::= [pure] function function prototype ;

function prototype ::=
function return type function identifier function parameter list prototype

function return type ::=
void
| data type

function parameter list prototype ::=
([function parameter { , function parameter }])
| ({ function parameter , } varargs parameter)

function parameter ::=
[function parameter dir] data type identifier [= constant expression]
| (type | ref type category | struct) identifier

Copyright © 2021 Accellera. All rights reserved.
464

Portable Test and Stimulus Standard 2.0 — April 2021

function parameter dir ::=
input
| output
| inout

varargs_parameter ::=
(data_type | type | ref type category | struct) .. identifier

B.6 Foreign procedural interface

import function ::=

import | platform qualifier] [language identifier]
function type identifier ;
| import [platform qualifier] [language identifier]

function function prototype ;

platform qualifier ::=
target
| solve

target template function ::=
target language identifier function function prototype = string literal ;

import class_decl ::= importclass import class identifier
[import class_extends] { { import class_function decl } }

import class extends ::= : type identifier { , type identifier }

import class_ function decl ::= function prototype ;

export action ::= export [platform qualifier] action type identifier
function parameter list prototype ;

B.7 Procedural statements

procedural stmt ::=
procedural sequence block stmt
| procedural data declaration
| procedural assignment stmt
| procedural void function call stmt
| procedural return stmt
| procedural repeat stmt
| procedural foreach stmt
| procedural if else stmt
| procedural match stmt
| procedural break stmt
| procedural continue stmt
} stmt terminator

procedural sequence block stmt ::= [sequence] { { procedural stmt } }

procedural data declaration ::= data type procedural data instantiation
{ , procedural data instantiation } ;

Copyright © 2021 Accellera. All rights reserved.
465

Portable Test and Stimulus Standard 2.0 — April 2021

procedural data instantiation ::= identifier [array dim] [= expression]
procedural assignment stmt ::= ref path assign op expression ;
procedural void function call stmt ::= [(void)] function call ;
procedural return stmt ::= return [expression] ;

procedural repeat stmt ::=
repeat ([index identifier :] expression) procedural stmt
| repeat procedural stmt while (expression) ;
| while (expression) procedural stmt

procedural foreach stmt ::=
foreach ([iterator identifier :] expression [[index identifier | 1)
procedural stmt

procedural if else stmt ::=
if (expression) procedural stmt [else procedural stmt]

procedural match stmt ::=
match (match expression)
{ procedural match choice { procedural match choice } }

procedural match choice ::=
[open range list | : procedural stmt
| default: procedural stmt

procedural break stmt ::= break;

procedural continue stmt ::= continue ;

B.8 Component declarations

component declaration ::=
[pure] component component identifier [template param decl list]
[component super spec] {1 component body item } }

component super spec ::= ! type identifier

component body item ::=
override declaration

| component data declaration
| component pool declaration
| action declaration
| abstract action declaration
| object bind stmt
| exec block
| struct declaration
| enum declaration
| covergroup declaration
| function decl

| import class decl

| procedural function

| import function

Copyright © 2021 Accellera. All rights reserved.
466

Portable Test and Stimulus Standard 2.0 — April 2021

| target template function
| export action

| typedef declaration

| import stmt

| extend stmt

| compile assert stmt

| attr group

| component body compile if
| stmt terminator

component data declaration ::=
[access modifier] [static const] data declaration

component pool declaration ::=
pool [[expression |] type identifier identifier ;

object bind stmt ::= bind hierarchical id object bind item or list ;

object bind item or list ::=
object bind item path
| { object bind item path { , object bind item path } }

object bind item path ::= { component path elem . } object bind item
component path elem ::= component identifier [[constant expression |]

object bind item ::=
action type identifier . identifier [[constant expression |]
| *

B.9 Activity statements

activity stmt ::=
[Iabel identifier :] labeled activity stmt
| activity data field
| activity bind stmt
| action handle declaration
| activity constraint stmt
| activity scheduling constraint
| stmt terminator

labeled activity stmt ::=
activity action traversal stmt

| activity sequence block stmt

| activity parallel stmt

| activity schedule stmt

| activity repeat stmt

| activity foreach stmt

| activity select stmt

| activity if else stmt

| activity match stmt

| activity replicate stmt

| activity super stmt

| symbol call

Copyright © 2021 Accellera. All rights reserved.
467

Portable Test and Stimulus Standard 2.0 — April 2021

activity action traversal stmt ::=
identifier [| expression |] inline constraints or empty
| do type identifier inline constraints or empty

inline constraints or empty ::=
with constraint_set

I3

activity sequence block stmt ::= [sequence] { { activity stmt } }
activity parallel stmt ::= parallel [activity join spec] { { activity stmt } }
activity schedule stmt ::= schedule [activity join spec] { { activity stmt } }

activity join spec ::=
activity join branch
| activity join select
| activity join none
| activity join first

activity join branch ::= join_branch (Iabel identifier { , label identifier })
activity join select ::= join_select (expression)

activity join none ::= join_none

activity join first ::= join_first (expression)

activity repeat stmt ::=
repeat ([index identifier :] expression) activity stmt
| repeat activity stmt while (expression) ;

activity foreach stmt ::= foreach ([iterator identifier :] expression
[[index identifier |]) activity stmt

activity select stmt ::= select { select branch select branch { select branch } }
select branch ::= [[(expression)][| expression |] :] activity stmt
activity if else stmt ::= if (expression) activity stmt [else activity stmt]

activity match stmt ::=
match (match expression) { match choice { match choice } }

match expression ::= expression
match choice ::=
[open range list | : activity stmt

| default : activity stmt

activity replicate stmt ::= replicate ([index identifier:] expression)
[label identifier|[]:] labeled activity stmt

activity super stmt ::= super ;

activity bind stmt ::= bind hierarchical id activity bind item or list ;

Copyright © 2021 Accellera. All rights reserved.
468

Portable Test and Stimulus Standard 2.0 — April 2021

activity bind item or list ::=
hierarchical id
| { hierarchical id list }

activity constraint stmt ::= constraint constraint set

symbol declaration ::=
symbol symbol identifier [(symbol paramlist)] { { activity stmt } }

symbol paramlist ::= [symbol param { , symbol param }]

symbol param ::= data type identifier

B.10 Overrides

override declaration ::= override { { override stmt } }

override stmt ::=
type override
| instance override
| stmt terminator

type override ::= type type identifier with type identifier ;

instance override ::= instance hierarchical id with type identifier ;

B.11 Data declarations

data declaration ::= data type data instantiation { , data instantiation } ;
data instantiation ::= identifier [array dim] [= constant expression]
array dim ::= [constant expression |

attr field ::= [access modifier] [rand | static const] data_declaration
access modifier ::= public | protected | private

attr group ::= access modifier :

B.12 Template types

template param decl list ::= < template param decl { , template param decl } >
template param decl ::= type param decl | value param decl

type param decl ::= generic type param decl | category type param decl
generic_type param decl ::= type identifier [= type identifier]
category type param decl ::=

type category identifier [type restriction] [= type identifier]

Copyright © 2021 Accellera. All rights reserved.
469

Portable Test and Stimulus Standard 2.0 — April 2021

type restriction
type category ::=
action
| component
| struct kind

value param decl ::=

template param value

. type identifier

data type identifier [

list ::=

constant expression]

< [template param value { , template param value }] >

template param value

B.13 Data types

data type ::=

::= constant expression

scalar data type
| collection type

| reference type
| type identifie

r

scalar data type ::=

chandle type
| integer type
| string type
| bool type
| enum_ type

casting type ::=
integer type

| bool type

| enum_ type

| type identifier

chandle type ::= cha

ndle

integer type ::= integer atom type

[| constant exp

ression [: 0]] 1

[in [domain open range list |]

integer atom type
int
| bit

domain open range list ::=

data type

domain open range value { , domain open range value }

domain open range value ::=

constant expression [

| constant expression ..

| .. constant expression

.. constant expression]

string type ::= string [in [string literal { , string literal } |]

Copyright © 2021 Accellera. All rights reserved.

470

Portable Test and Stimulus Standard 2.0 — April 2021

bool type ::= bool

enum declaration ::= enum enum identifier { [enum item { , enum item }] }
enum item ::= identifier [= constant expression]

enum_type ::= enum type identifier [in [domain open range list |]

collection type ::=
array < data type , array size expression >
| list < data type >
| map < data type, data type >
| set < data type >

array size expression ::= constant expression

reference type ::= ref entity type identifier

typedef declaration ::= typedef data type identifier ;
B.14 Constraints

constraint declaration ::=
constraint constraint_set
| [dynamic] constraint identifier constraint block

constraint set ::=
constraint body item
| constraint block

constraint block ::= { { constraint body item } }

constraint body item ::=
expression constraint item
| foreach constraint item
| forall constraint item
| if constraint item
| implication constraint item
| unique constraint item
| default hierarchical id == constant expression ;
| default disable hierarchical id ;
| stmt terminator

expression constraint item ::= expression ;
foreach constraint item ::=
foreach ([iterator identifier :] expression [[index identifier |])

constraint set

forall constraint item ::=
forall (iterator identifier : type identifier [in ref path]) constraint set

if constraint item ::= if (expression) constraint set [else constraint set]

implication constraint item ::= expression -> constraint set

Copyright © 2021 Accellera. All rights reserved.
471

Portable Test and Stimulus Standard 2.0 — April 2021

unique constraint item ::= unique { hierarchical id list } ;

B.15 Coverage specification

covergroup declaration ::= covergroup covergroup identifier
(covergroup port {, covergroup port }) { { covergroup body item } }
covergroup port ::= data type identifier

covergroup body item ::=
covergroup option
| covergroup coverpoint
| covergroup cross
| stmt terminator

covergroup option ::=
option . identifier = constant expression ;
| type_option . identifier = constant expression ;

covergroup instantiation ::=
covergroup_ type instantation
| inline covergroup

inline covergroup ::= covergroup {1 covergroup body item } } identifier ;

covergroup type instantiation ::=
covergroup type identifier covergroup identifier
(covergroup portmap list) covergroup options or empty

covergroup portmap list ::=
covergroup portmap { , covergroup portmap }
| hierarchical id 1list

covergroup portmap ::= . identifier (hierarchical id)

covergroup options or empty ::=
with { { covergroup option } }
3
covergroup_ coverpoint ::= [[data type] coverpoint identifier :] coverpoint
expression [iff (expression)] bins or empty

bins or empty ::=
{ { covergroup coverpoint body item } }

s

covergroup coverpoint body item ::=
covergroup option
| covergroup coverpoint binspec

covergroup coverpoint binspec ::= bins keyword identifier
[[[constant expression] |] = coverpoint bins

Copyright © 2021 Accellera. All rights reserved.
472

Portable Test and Stimulus Standard 2.0 — April 2021

coverpoint bins ::=
[covergroup range list | [with (covergroup expression)] ;
| coverpoint identifier with (covergroup expression) ;
| default ;

covergroup range list ::= covergroup value range { , covergroup value range }

covergroup value range ::=

expression
| expression .. [expression]
| [expression] .. expression
bins keyword ::= bins | illegal bins | ignore_bins
covergroup expression ::= expression

covergroup_cross ::=
covercross identifier ! €ross coverpoint identifier

{, coverpoint identifier }[iff (expression)] cross item or null

cross_item or null ::=
{ { covergroup cross body item } }

[

covergroup cross body item ::=
covergroup option
| covergroup cross binspec

covergroup cross _binspec ::= bins keyword identifier = covercross identifier
with (covergroup expression) ;

B.16 Conditional compilation

package body compile if ::= compileif (constant expression)
package body compile if item [else package body compile if item]

package body compile if item ::=
package body item
| { { package body item } }

action body compile if ::= compileif (constant expression)
action body compile if item [else action body compile if item]

action body compile if item ::=
action body item
| { { action body item } }

component body compile if ::= compileif (constant expression)
component body compile if item [else component body compile if item]

component body compile if item ::=
component body item
| { { component body item } }

Copyright © 2021 Accellera. All rights reserved.
473

Portable Test and Stimulus Standard 2.0 — April 2021

struct body compile if ::= compileif (constant expression)

struct _body compile if item [else struct body compile if item]

struct body compile if item ::=
struct body item
| { { struct body item } }

compile has expr ::= compile has (static ref path)

compile assert stmt ::=

compile assert (constant expression [, string literal]) ;

B.17 Expressions

constant expression ::= expression

expression ::=
primary
| unary operator primary
| expression binary operator expression
| conditional expression
| in expression

unary operator ::=- | ! | ~ | & | | | *

binary operator ::=

L% - << > = = <= >= | || | && | |
|A|&|7’:*
assign_op ::= = | += | = | <<= | >>= | = |
conditional expression ::= cond predicate ? expression : expression
cond predicate ::= expression
in expression ::=
expression in [open range list |
| expression in collection expression
open range list ::= open range value { , open range value }
open_range value ::= expression [.. expression]
collection expression ::= expression
primary ::=
number

| aggregate literal
| bool literal
| string literal
| null ref

| paren expr
| cast expression
| ref path

| compile has expr

Copyright © 2021 Accellera. All rights reserved.

474

Portable Test and Stimulus Standard 2.0 — April 2021

paren _expr ::= (expression)
cast_expression ::= (casting type) expression
ref path ::=
static_ref path [. hierarchical id] [bit slice]

| [super.] hierarchical id [bit slice]
static ref path ::= [&] { type identifier elem :: } member path elem
bit slice ::= | constant expression : constant expression |

function call ::=
super. function ref path

| [2] { type identifier elem :: } function ref path
function ref path ::= { member path elem . } identifier function parameter list
symbol call ::= symbol identifier function parameter list ;
function parameter list ::= ([expression { , expression }])

B.18 Identifiers

identifier ::=
ID
| ESCAPED ID

hierarchical id list ::= hierarchical id { , hierarchical id }
hierarchical id ::= member path elem { . member path elem }
member path elem ::= identifier [function parameter list] [[expression |]
action identifier ::= identifier

component identifier ::= identifier

covercross_identifier ::= identifier

covergroup identifier = identifier

coverpoint identifier ::= identifier

enum identifier ::= identifier

function identifier ::= identifier

import class identifier ::= identifier

index identifier ::= identifier

iterator identifier ::= identifier

label identifier ::= identifier

Copyright © 2021 Accellera. All rights reserved.
475

Portable Test and Stimulus Standard 2.0 — April 2021

language identifier ::= identifier

package identifier ::= identifier

struct identifier ::= identifier

symbol identifier ::= identifier

type identifier ::= [I] type identifer elem { :: type identifer elem }
type identifier elem ::= identifier [template param value list]
action type identifier ::= type identifier
buffer type identifier ::= type identifier
component type identifier ::= type identifier
covergroup type identifier ::= type identifier

enum type identifier ::= type identifier
resource type identifier ::= type identifier

state type identifier ::= type identifier

stream type identifier ::= type identifier

entity type identifier ::=
action type identifier
| component type identifier
| flow object type
| resource object type

B.19 Numbers and literals

number ::=

oct number
| dec number
| hex number
| based bin number
| based oct number
| based dec number
| based hex number

bin digit ::= [0-1]
oct digit ::= [0-7]
dec digit ::= [0-9]
hex_digit ::= [0-9] | [a-f] | [A-F]

oct number 0 { oct digit | _ }

dec_number [1-9] { dec digit | _ }

Copyright © 2021 Accellera. All rights reserved.
476

Portable Test and Stimulus Standard 2.0 — April 2021

hex number ::= 0[x|X] hex digit { hex digit | _ }
BASED BIN LITERAL ::= '[s|S]b|B bin digit { bin digit | _ }
BASED OCT LITERAL ::= '[s[S]0]|O oct digit { oct digit | _ }

BASED DEC LITERAL "[s|1S1d|D dec digit { dec digit | _ }

BASED HEX LITERAL '[sISTh|H hex digit { hex digit | _ }

based bin number ::= [dec_number] BASED BIN LITERAL
based oct number ::= [dec number] BASED OCT LITERAL
based dec number ::= [dec number] BASED DEC LITERAL
based hex number ::= [dec number] BASED HEX LITERAL

aggregate literal ::=
empty aggregate literal
| value list literal
| map literal
| struct literal

empty aggregate literal ::= { }

value list literal ::= { expression { , expression } }

map literal ::= { map literal item { , map literal item } }

map_ literal item ::= expression : expression

struct literal ::= { struct literal item { , struct literal item } }
struct literal item ::= . identifier = expression

bool literal ::=
true
| false

null ref ::= null

B.20 Additional lexical conventions

SL _COMMENT ::= //{any ASCII character except newline}\n
ML _COMMENT ::= /*{any ASCII character}*/
string literal ::=
QUOTED_STRING
| TRIPLE QUOTED STRING
QUOTED_STRING ::= " { unescaped character | escaped character } "
unescaped character ::= any printable ASCII character

Copyright © 2021 Accellera. All rights reserved.
477

Portable Test and Stimulus Standard 2.0 — April 2021

escaped character ::= \("|"|?|\la|b|fin|r|t|v]|[0-7][0-7][0-7])

TRIPLE QUOTED STRING ::= """{any ASCII character}'"""

filename string

:= QUOTED STRING

ID ::= [a-Z]|[A-Z]|_ {[a-z]|[A-Z]1]_110-9]1}

ESCAPED_ID

whitespace

\{any printable ASCII character except whitespace} whitespace

space | tab | newline | end of file

Copyright © 2021 Accellera. All rights reserved.
478

Portable Test and Stimulus Standard 2.0 — April 2021

Annex C
(normative)

C++ header files

This annex contains the header files for the C++ input. If there is a conflict between a C++ class declaration
shown anywhere in this standard and the material in this annex, the material shown in this annex shall take
precedence.

C.1 File pss.h

#pragma once

#include "pss/scope.h"

#include "pss/type decl.h"
#include "pss/bit.h"

#include "pss/cond.h"

#include "pss/vec.h"

#include "pss/enumeration.h"
#include "pss/chandle.h"
#include "pss/width.h"

#include "pss/range.h"

#include "pss/attr.h"

#include "pss/rand_attr.h"
#include "pss/component.h"
#include "pss/comp inst.h"
#include "pss/covergroup.h"
#include "pss/covergroup bins.h"
#include "pss/covergroup coverpoint.h"
#include "pss/covergroup cross.h"
#include "pss/covergroup iff.h"
#include "pss/covergroup_ inst.h"
#include "pss/covergroup options.h"
#include "pss/structure.h"
#include "pss/buffer.h"

#include "pss/stream.h"

#include "pss/state.h"

#include "pss/resource.h"
#include "pss/lock.h"

#include "pss/share.h"

#include "pss/symbol.h"

#include "pss/action.h"

#include "pss/input.h"

#include "pss/output.h"

#include "pss/constraint.h"
#include "pss/in.h"

#include "pss/unique.h"

#include "pss/default value.h"
#include "pss/default disable.h"
#include "pss/action_handle.h"
#include "pss/action attr.h"
#include "pss/pool.h"

#include "pss/bind.h"

#include "pss/exec.h"

#include "pss/foreach.h"

Copyright © 2021 Accellera. All rights reserved.
479

Portable Test and Stimulus Standard 2.0 — April 2021

#include "pss/forall.h"
#include "pss/if then.h"
#include "pss/function.h"
#include "pss/import class.h"
#include "pss/export action.h"
#include "pss/extend.h"
#include "pss/override.h"
#include "pss/ctrl flow.h"

C.2 File pss/action.h

#pragma once
#include <vector>
#include "pss/detail/actionBase.h"
#include "pss/detail/algebExpr.h"
#include "pss/detail/activityBase.h"
#include "pss/detail/Stmt.h"
#include "pss/detail/sharedExpr.h"
#include "pss/detail/comp ref.h"
namespace pss {
class component; // forward declaration
/// Declare an action
class action : public detail::ActionBase {

protected:
/// Constructor
action (const scope& s);

/// Destructor
~action();
public:
template <class T=component> detail::comp ref<T> comp();
/// In-line exec block
virtual void pre solve();
/// In-line exec block
virtual void post solve();
/// Declare an activity
class activity : public detail::ActivityBase {

public:
// Constructor
template < class... R >
activity (R&&... /* detail::Stmt */ r);

// Destructor
~activity();
}i
// Specifies the guard condition for a select branch
class guard {
public:
guard (const detail::AlgebExpr &cond);
}i
// Specifies the weight for a select branch
class weight {
public:
weight (const detail::AlgebExpr &w);
i
class branch {
public:
// Specifies a select-branch statement with no guard
// condition and no weight

Copyright © 2021 Accellera. All rights reserved.
480

Portable Test and Stimulus Standard 2.0 — April 2021

template <class R> branch(
const R& /* detail::Stmt */ r);
// Specifies a select-branch statement with a guard
// condition and no weight
template <class R> branch(const guard &g,
const R& /* detail::Stmt */ r);
// Specifies a select-branch statement with both a
// guard condition and a weight
template <class R> branch(
const guard &g,
const weight &w,
const R& /* detail::Stmt */ r);
// Specifies a select-branch statement with a weight and
// no guard condition
template <class R> branch(
const weight &w,
const R& /* detail::Stmt */ r);
}i
// select() must be inside action declaration to disambiguate
// from built in select()
/// Declare a select statement
class select : public detail::Stmt ({

public:
template < class... R >
select (R&&... /* detail::Stmt|branch */ r);

b
/// Declare a schedule block
class schedule : public detail::Stmt {

public:
// Constructor
template < class... R >
schedule (R&&... /* detail::Stmt */ r);

}i
/// Declare a parallel block
class parallel : public detail::Stmt {

public:
// Constructor
template < class... R >
parallel (R&&... /* detail::Stmt */ r);

bi
/// Declare a replicate statement
class replicate : public detail::Stmt {
public:
/// Declare a replicate statement
replicate(const detail::AlgebExpré& count,
const detail::Stmt& activity);
/// Declare a replicate statement with iterator variable
replicate(const attr<int>& iter,
const detail::AlgebExpré& count,
const detail::Stmté& activity);
}i
}; // class action
}; // namespace pss
#include "pss/timpl/action.t™

Copyright © 2021 Accellera. All rights reserved.
481

Portable Test and Stimulus Standard 2.0 — April 2021

C.3 File pss/action_attr.h

#pragma once
#include "pss/rand_attr.h"
namespace pss {
template < class T >
class action attr : public rand attr<T> ({
public:
/// Constructor
action attr (const scopeé& name);
/// Constructor defining width
action_attr (const scope& name, const width& a width);
/// Constructor defining range
action attr (const scopeé& name, const range& a range);
/// Constructor defining width and range
action attr (const scope& name, const widthé& a width,
const rangeé& a_range);
}i
}; // namespace pss
#include "pss/timpl/action attr.t"

C.4 File pss/action_handle.h

#pragma once
#include "pss/detail/actionHandleBase.h"
#include "pss/detail/algebExpr.h"
namespace pss {
/// Declare an action handle
template<class T>
class action handle : public detail::ActionHandleBase {
public:
action handle();
action handle(const scopeé& name) ;
action handle (const action handle<T>& a action handle);

template <class... R> action handle<T> with (

const R&... /* detail::AlgebExpr */ constraints);
T* operator-> ();
T& operator* ();

i
}; // namespace pss
#include "pss/timpl/action handle.t"

C.5 File pss/attr.h

#pragma once

#include <string>
#include <memory>
#include <list>

#include "pss/bit.h"
#include "pss/vec.h"
#include "pss/scope.h"
#include "pss/width.h"
#include "pss/range.h"

Copyright © 2021 Accellera. All rights reserved.
482

Portable Test and Stimulus Standard 2.0 — April 2021

#include "pss/structure.h"
#include "pss/component.h"

#include "pss/detail/attrTBase.h"
#include "pss/detail/attrIntBase.h"
#include "pss/detail/attrBitBase.h"
#include "pss/detail/attrStringBase.h"
#include "pss/detail/attrBoolBase.h"
#include "pss/detail/attrCompBase.h"

#include "pss/detail/attrVecTBase.h"
#include "pss/detail/attrVecIntBase.h"
#include "pss/detail/attrVecBitBase.h"
#include "pss/detail/attrVecStringBase.h"

#include "pss/detail/algebExpr.h"
#include "pss/detail/execStmt.h"

namespace pss {
template <class T>
class rand attr; // forward reference

/// Primary template for enums and structs
template < class T>
class attr : public detail::AttrTBase {
public:
/// Constructor
attr (const scopeé& s);
/// Constructor with initial value
attr (const scopeé& s, const T& init val);
/// Constructor defining range
attr (const scope& s, const range& a range);
/// Constructor defining range and (const) initial value
attr (const scope& s, const range& a range, const T& init val);
/// Copy constructor
attr (const attr<T>& other);
/// Struct access
T* operator-> ();
/// Struct access
T& operator* ();
/// Enumerator access
T& vall();
/// Exec statement assignment
detail::ExecStmt operator= (const detail::AlgebExpré& value);
}i

/// Template specialization for int
template <>
class attr<int> : public detail::AttrIntBase {
public:
/// Constructor
attr (const scopeé& s);
/// Constructor with (const) initial value
attr (const scope& s, const int& init val);
/// Constructor with (non const) initial expression
attr (const scope& s, const detail::AlgebExpré& init val);
/// Constructor defining width
attr (const scope& s, const widthé& a width);
/// Constructor defining width and (const) initial value

Copyright © 2021 Accellera. All rights reserved.
483

Portable Test and Stimulus Standard 2.0 — April 2021

attr (const scope& s, const widthé&
/// Constructor defining width and
attr (const scope& s, const widthé&
init val);

/// Constructor defining range
attr (const scope& s, const rangeé&
/// Constructor defining range and
attr (const scope& s, const rangeé&

const inté& init wval);

/// Constructor defining range and
attr (const scopeé& s, const rangeé&
init val);

a width, const inté& init val);
(non const) initial expression
a width, const detail::AlgebExpré&

a_range) ;
(const) initial value
a_range,

(non const) initial expression

a range, const detail::AlgebExpré&

/// Constructor defining width and range

attr (const scope& s, const widthé& a width,
const range& a_range);

/// Constructor defining width and range and

(const) initial value

const widthé&

(const scopeé& s,
const rangeé& a range,
const inté& init wval);

attr a width,

/// Constructor defining width and range and (non const) initial expression

attr (const scope& s, const widthé&

const range& a_range,

a width,

const detail::AlgebExpré& init val);

/// Copy constructor

attr (const attr<int>& other);
/// Access to underlying data
int& val();

/// Exec statement assignment

detail::ExecStmt operator=
detail::ExecStmt operator+= (const
detail::ExecStmt operator-= (const
detail::ExecStmt operator<<=
detail::ExecStmt operator>>=
detail::ExecStmt operator&= (const
detail::ExecStmt operator|= (const

i

/// Template specialization for bit

template <>

class attr<bit>

public:
/// Constructor
attr (const scopeé& s);
/// Constructor with (const)
attr (const scopeé& s,
/// Constructor with (non const)
attr (const scope& s, const detail
/// Constructor defining width
attr (const scope& s, const widthé&
/// Constructor defining width and
attr (const scope& s, const widthé&
/// Constructor defining width and
attr (const scope& s, const widthé&
init val);
/// Constructor defining range
attr (const scope& s, const rangeé&
/// Constructor defining range and
attr (const scopeé& s, const rangeé&

(const detail::AlgebExpr& value);

detail::AlgebExpré& value);
detail::AlgebExpr& value);

(const detail::AlgebExpr& value);
(const detail::AlgebExpré& value);

detail::AlgebExpr& value);
detail::AlgebExpr& value);

public detail::AttrBitBase {

initial value
const bit& init val);
initial expression

::AlgebExpr& init val);

a_width);

(const) initial value

a width, const bit& init val);
(non const) initial expression

a width, const detail::AlgebExpré&

a_range) ;
(const)
a range,

initial value

Copyright © 2021 Accellera. All rights reserved.

484

Portable Test and Stimulus Standard 2.0 — April 2021

const bité& init val);
/// Constructor defining range and (non const) initial expression
attr (const scope& s, const range& a range, const detail::AlgebExpré&
init val);
/// Constructor defining width and range
attr (const scope& s, const widthé& a width,

const range a_range);
/// Constructor defining width and range and (const) initial value
attr (const scope& s, const widthé& a width,

const range& a_range,

const bit& init val);
/// Constructor defining width and range and (non const) initial expression
attr (const scope& s, const widthé& a width,

const range& a_range,

const detail::AlgebExpré& init val);
/// Copy constructor
attr (const attr<bit>& other);
/// Access to underlying data
bit& val();
/// Exec statement assignment
detail::ExecStmt operator= (const detail::AlgebExpré& value);
detail::ExecStmt operator+= (const detail::AlgebExpr& value);
detail::ExecStmt operator-= (const detail::AlgebExpr& value);
detail::ExecStmt operator<<= (const detail::AlgebExpré& value)
detail::ExecStmt operator>>= (const detail::AlgebExpr& value)
detail::ExecStmt operator&= (const detail::AlgebExpré& value);
detail::ExecStmt operator|= (const detail::AlgebExpr& value);

}i

’

’

/// Template specialization for string
template <>
class attr<std::string> : public detail::AttrStringBase {
public:
/// Constructor
attr (const scopeé& s);
/// Constructor and (const) initial value
attr (const scope& s, const std::stringé& init val);
/// Constructor with (non const) initial expression
attr (const scope& s, const detail::AlgebExpré& init val);
/// Constructor defining range
attr (const scope& s, const range& a range);
/// Constructor defining range and (const) initial value
attr (const scope& s, const range& a range,
const std::string& init val);
/// Constructor defining range and (non const) initial expression
attr (const scope& s, const range& a range, const detail::AlgebExpré&
init val);
/// Copy constructor
attr (const attr<std::string>& other);
/// Access to underlying data
std::string& val();
/// Exec statement assignment
detail::ExecStmt operator= (const detail::AlgebExpr& value);
}i

/// Template specialization for bool
template <>
class attr<bool> : public detail::AttrBoolBase {

Copyright © 2021 Accellera. All rights reserved.
485

Portable Test and Stimulus Standard 2.0 — April 2021

public:

/// Constructor

attr (const scopeé& s);

/// Constructor and (const) initial value

attr (const scope& s, const bool init val);

/// Constructor with (non const) initial expression

attr (const scope& s, const detail::AlgebExpré& init val);

/// Copy constructor

attr (const attr<bool>& other);

/// Access to underlying data

bools& val () ;

/// Exec statement assignment

detail::ExecStmt operator= (const detail::AlgebExpr& value);
}i

/// Template specialization for component*
template <>
class attr<component*> : public detail::AttrCompBase {
public:
/// Copy constructor
attr (const attr<component*>& other);
/// Access to underlying data
component* val () ;

b

/// Template specialization for array of ints
template <>
class attr<vec<int>> : public detail::AttrVecIntBase {
public:
/// Constructor defining array size
attr (const scope& name, const std::size t count);
/// Constructor defining array size and element width
attr (const scope& name, const std::size t count,
const widthé& a width);
/// Constructor defining array size and element range
attr (const scope& name, const std::sizeit count,
const range& a_range);

/// Constructor defining array size and element width and range

attr (const scope& name, const std::size t count,
const width& a width, const range& a range);

/// BAccess to specific element
attr<int>& operator([] (const std::size t idx);
/// Constraint on randomized index
detail::AlgebExpr operator[] (const detail::AlgebExpré& idx);
/// Get size of array
std::size t size() const;
/// Constraint on sum of array
detail::AlgebExpr sum() const;

}i

/// Template specialization for array of bits
template <>
class attr<vec<bit>> : public detail::AttrVecBitBase {
public:
/// Constructor defining array size
attr (const scope& name, const std::size_t count) ;
/// Constructor defining array size and element width
attr(const scope& name, const std::size t count,

Copyright © 2021 Accellera. All rights reserved.
486

Portable Test and Stimulus Standard 2.0 — April 2021

const width& a width);
/// Constructor defining array size and element range
attr (const scope& name, const std::size t count,
const range& a_range);
/// Constructor defining array size and element width and range
attr (const scope& name, const std::size t count,
const width& a width, const range& a range);
/// Access to specific element
attr<bit>& operator([] (const std::size t idx);
/// Constraint on randomized index
detail::AlgebExpr operator[] (const detail::AlgebExpr& idx);
/// Get size of array
std::size t size() const;
/// Constraint on sum of array
detail::AlgebExpr sum() const;
}i

/// Template specialization for array of strings
template <>
class attr<vec<std::string>> : public detail::AttrVecStringBase {
public:
/// Constructor defining array size
attr (const scope& name, const std::size t count);
/// Constructor defining array size and element range
attr (const scope& name, const std::sizeit count,
const range& a_range);
/// Access to specific element
attr<std::string>& operator[] (const std::size t idx);
/// Constraint on randomized index
detail::AlgebExpr operator[] (const detail::AlgebExpré& idx);
/// Get size of array
std::size t size() const;
b

/// Template specialization for arrays of enums and arrays of structs
template <class T>
class attr<vec<T>> : public detail::AttrVecTBase ({
public:
attr (const scope& name, const std::size_t count) ;
attr (const scope& name, const std::size t count, const range& a range);

attr<T>& operator[] (const std::size t idx);
detail::AlgebExpr operator[] (const detail::AlgebExpré& idx);
std::size t size() const;

b

template < class T >
using attr vec = attr< vec <T> >;

}; // namespace pss

#include "pss/timpl/attr.t"

Copyright © 2021 Accellera. All rights reserved.
487

Portable Test and Stimulus Standard 2.0 — April 2021

C.6 File pss/bind.h

#pragma once
#include "pss/pool.h"
#include "pss/detail/bindBase.h"
#include "pss/detail/ioBase.h"
namespace pss {

/// Declare a bind

class bind : public detail::BindBase {

public:
/// Bind a type to multiple targets
template <class R /*type*/, typename... T /*targets*/ >
bind (const pool<R>& a pool, const T&... targets);
/// Explicit binding of action inputs and outputs
template <class... R>
bind (const R&... /* input|output|lock]|share */ io items);
/// Destructor
~bind () ;

}i
}; // namespace pss
#include "pss/timpl/bind.t"

C.7 File pss/bit.h

#pragma once
namespace pss {

using bit = unsigned int;
}; // namespace pss

C.8 File pss/buffer.h

#pragma once
#include "pss/detail/bufferBase.h"
#include "pss/scope.h"
namespace pss {
/// Declare a buffer object
class buffer : public detail::BufferBase {
protected:
/// Constructor
buffer (const scopeé& s);
/// Destructor
~pbuffer();
public:
/// In-line exec block
virtual void pre solve();
/// In-line exec block
virtual void post solve();
}i

}; // namespace pss

Copyright © 2021 Accellera. All rights reserved.
488

Portable Test and Stimulus Standard 2.0 — April 2021

C.9 File pss/chandle.h

#pragma once

#include "pss/detail/algebExpr.h"

#include "pss/detail/chandleBase.h"

namespace pss {
class chandle : public detail::ChandleBase {
public:

chandle& operator= (detail::AlgebExpr val);

bi

}i

C.10 File pss/comp_inst.h

#pragma once
#include "pss/detail/compInstBase.h"
#include "pss/detail/compInstVecBase.h"
#include "pss/scope.h"
namespace pss {
/// Declare a component instance
template<class T>
class comp inst : public detail::CompInstBase {
public:
/// Constructor
comp_inst (const scopeé& s);
/// Copy Constructor
comp_inst (const comp inst& other);
/// Destructor
~comp_inst();
/// Access content

T* operator-> ();
/// Access content
T& operator* ();

}i
/// Template specialization for array of components
template<class T>
class comp inst<vec<T> > : public detail::CompInstVecBase {
public:
comp_inst (const scope& name, const std::size t count);
comp_inst<T>& operator[] (const std::size t idx);
std::size t size() const;
}i
template < class T >
using comp inst vec = comp_inst< vec <T> >;
}; // namespace pss
#include "pss/timpl/comp inst.t"

C.11 File pss/component.h

#pragma once
#include "pss/detail/componentBase.h"
#include "pss/scope.h"
namespace pss {
/// Declare a component
class component : public detail::ComponentBase {

Copyright © 2021 Accellera. All rights reserved.
489

Portable Test and Stimulus Standard 2.0 — April 2021

protected:
/// Constructor
component (const scopeé& s);
/// Copy Constructor
component (const componenté& other);
/// Destructor
~component () ;

public:
/// In-line exec block
virtual void init down();
virtual void init up();
virtual void init();

}i

}; // namespace pss

C.12 File pss/cond.h

#pragma once
namespace pss {
namespace detail {
class AlgebExpr;
}
class cond {
public:
cond (const detail::AlgebExpr &c);
}i
}

C.13 File pss/constraint.h

#pragma once
#include <vector>
#include "pss/detail/constraintBase.h"
namespace pss {
namespace detail {
class AlgebExpr; // forward reference
}
/// Declare a member constraint
class constraint : public detail::ConstraintBase {
public:
/// Declare an unnamed member constraint
template <class... R> constraint (
const R&&... /*detail::AlgebExpr*/ expr
)
/// Declare a named member constraint

template <class... R> constraint (
const std::string& name,
const R&&... /*detail::AlgebExpr*/ expr

);
}i
/// Declare a dynamic member constraint
class dynamic constraint : public detail::DynamicConstraintBase {

public:
/// Declare a named dynamic member constraint
template <class... R> dynamic_ constraint (

const std::string& name,

Copyright © 2021 Accellera. All rights reserved.
490

Portable Test and Stimulus Standard 2.0 — April 2021

const R&&... /*detail::AlgebExpr*/ expr
)
}i
}; // namespace pss
#include "pss/timpl/constraint.t"

C.14 File pss/covergroup.h

#pragma once
#include <stdint.h>
#include <string>
#include "pss/scope.h"
namespace pss {
class covergroup {
public:
covergroup (const scope &s);
virtual ~covergroup () ;
}i
}

C.15 File pss/covergroup_bins.h

#pragma once
#include <string>
#include "pss/covergroup.h"
#include "pss/range.h"
#include "pss/covergroup coverpoint.h"
namespace pss {
namespace detail {
class AlgebExpr;
}
template <class T> class bins {
public:
i
template <> class bins<int> {

public:
// default bins
bins(const std::string &name) ;
bins (
const std::string &name,
const range &ranges) ;
bins (
const std::string &name,
const coverpoint &cp) ;

const bins<int> &with (const detail::AlgebExpr &expr);
i
template <> class bins<bit> {

public:
// default bins
bins (const std::string &name) ;
bins (
const std::string &name,
const range &ranges) ;
bins (
const std::string &name,
const coverpoint &cp) ;

Copyright © 2021 Accellera. All rights reserved.
491

Portable Test and Stimulus Standard 2.0 — April 2021

bins (
const std::string

const rand attr<bit>

bins (
const std::string
const attr<bit>

&name,
&var) ;

&name,
&var) ;

const bins<bit> &with (const detail::AlgebExpr &expr);

b

template <> class bins<vec<int>> ({

public:
// default bins
bins (
const std::string
uint32 t
bins (
const std::string
uint32 t
const range
bins (
const std::string
uint32 t
const coverpoint
bins (
const std::string
const range
bins (
const std::string
const coverpoint
bins (
const std::string

const rand attr<int>

bins (
const std::string
const attr<int>

const bins<vec<int>> &with (const detail::AlgebExpr &expr);

i

&name,
size);

&name,
size,
&ranges) ;

&name,
size,
&cp) ;

&name,
&ranges) ;

&name,
&cp) ;

&name,
&var) ;

&name,
&var) ;

template <> class bins<vec<bit>> {

public:
// default bins
bins (
const std::string
bins (

const std::string
const range

bins (
const std::string
const coverpoint

bins (
const std::string
uint32 t
const range
bins (
const std::string

const rand attr<bit>

bins (
const std::string
const attr<bit>
bins (

&name) ;

&name,
&ranges) ;

&name,
&cp) ;

&name,
size,
&ranges) ;

&name,
&var) ;

&name,
&var) ;

Copyright © 2021 Accellera. All rights reserved.

492

Portable Test and Stimulus Standard 2.0 — April 2021

const std::string &name,
uint32 t size,
const coverpoint &cp) ;

const bins<vec<bit>> &with (const detail::AlgebExpr &expr);
}i
template <class T> class ignore bins {
public:
bi

template <> class ignore bins<int> {

public:
// default bins
ignore bins(const std::string &name) ;
ignore bins(
const std::string &name,
const range &ranges) ;
ignore bins(
const std::string &name,
const coverpoint &cp) ;

const ignore bins<int> &with (const detail::AlgebExpr &expr);
bi
template <> class ignore bins<bit> {

public:
// default bins
ignore bins(const std::string &name) ;
ignore bins(
const std::string &name,
const range &ranges) ;
ignore bins(
const std::string &name,
const coverpoint &cp) ;

const ignore bins<bit> &with (const detail::AlgebExpr &expr);
bi

template <> class ignore bins<vec<int>> ({

public:
ignore bins(const std::string &name) ;
ignore bins(
const std::string &name,
const range &ranges) ;
ignore bins(
const std::string &name,
const coverpoint &cp) ;
ignore bins(
const std::string &name,
uint32 t size,
const range &ranges) ;
ignore bins(
const std::string &name,
uint32 t size,
const coverpoint &cp) ;

const ignore bins<vec<int>> &with (const detail::AlgebExpr &expr);
}i
template <> class ignore bins<vec<bit>> ({

public:
// default bins
ignore bins(const std::string &name) ;
ignore bins(
const std::string &name,
const range &ranges) ;

ignore bins(

Copyright © 2021 Accellera. All rights reserved.
493

Portable Test and Stimulus Standard 2.0 — April 2021

const std::string &name,

const coverpoint &cp)
ignore bins(

const std::string &name,

uint32 t size,

const range &ranges) ;
ignore bins(

const std::string &name,

uint32 t size,

const coverpoint &cp) ;

const ignore bins<vec<bit>> &with (const detail::AlgebExpr &expr);
}i
template <class T> class illegal bins {
public:
}i
template <> class illegal bins<int> {

public:
// Default bins
illegal bins(const std::string &name) ;
illegal bins(
const std::string &name,
const range &ranges) ;
illegal bins(
const std::string &name,
const coverpoint &cp) ;

const illegal bins<int> &with(const detail::AlgebExpr &expr);
}i
template <> class illegal bins<bit> ({

public:
// Default bins
illegal bins(const std::string &name) ;
illegal bins(
const std::string &name,
const range &ranges) ;
illegal bins(
const std::string &name,
const coverpoint &cp) ;

const illegal bins<bit> &with(const detail::AlgebExpr &expr);
}i
template <> class illegal bins<vec<int>> {

public:
// Default bins
illegal bins(const std::string &name) ;
illegal bins(
const std::string &name,
const range &ranges) ;
illegal bins(
const std::string &name,
const coverpoint &cp) ;
illegal bins(
const std::string &name,
uint32 t size,
const range &ranges) ;
illegal bins(
const std::string &name,
uint32 t size,
const coverpoint &cp) ;

const illegal bins<vec<int>> &with(const detail::AlgebExpr &expr);

Copyright © 2021 Accellera. All rights reserved.
494

Portable Test and Stimulus Standard 2.0 — April 2021

template <> class illegal bins<vec<bit>> {

public:

// Default bins

illegal bins(const std::string

illegal bins(
const std::string
const range
illegal bins(
const std::string
const coverpoint
illegal bins(
const std::string

uint32

t

const range
illegal bins(
const std::string

uint32

t

const coverpoint
const illegal bins<vec<bit>> &with(const detail::AlgebExpr &expr);

&name) ;

&name,
&ranges) ;

&name,
&cp) ;

&name,
size,
&ranges) ;

&name,
size,
&cp) ;

C.16 File pss/covergroup_coverpoint.h

#pragma once
#include
#include
#include
#include
#include
namespace pss {

"pss/covergroup.h"
"pss/covergroup options.h"
"pss/covergroup iff.h"

"pss/detail/algebExpr.h"
"pss/detail/coverpointBase.h"

namespace detail {
class AlgebExpr;

}

class coverpoint

public:

template <class...

const std::string

const
const

template <class...

detail::AlgebExpr
T&. ..

const std::string

const detail::AlgebExpr
const iff

const T&...

template <class...

const
const
const
const

template <class...

const
const
const
const
const

template <class...

std::string
detail::AlgebExpr
options

T&. ..

std::string
detail::AlgebExpr
iff

options

T&. ..

public detail::CoverPointBase ({

T> coverpoint (

&name,
&target,

/*ifflbinsIignore_binsIillegal_bins
T> coverpoint (

&name,
&target,
&cp 1iff,

/*ifflbinsIignore_binsIillegal_bins
T> coverpoint (

&name,
&target,
&cp_options,

/*ifflbinsIignore_binsIillegal_bins
T> coverpoint (

&name,
&target,

&cp iff,
&cp_options,

/*ifflbinsIignore_binsIillegal_bins
T> coverpoint (

Copyright © 2021 Accellera. All rights reserved.

495

*/ bin items);

*/ bin items);

*/ bin items);

*/ bin items);

Portable Test and Stimulus Standard 2.0 — April 2021

const detail::AlgebExpr &target,

const T&... /*iff|bins|ignore bins|illegal bins */ bin items);
template <class... T> coverpoint (

const detail::AlgebExpr &target,

const iff &cp 1iff,

const T&... /*iff|bins|ignore bins|illegal bins */ bin items);
template <class... T> coverpoint (

const detail::AlgebExpr &target,

const options &cp_options,

const T&... /*iff|bins|ignore bins|illegal bins */ bin items);
template <class... T> coverpoint (

const detail::AlgebExpr &target,

const iff &cp iff,

const options &cp_options,

const T&... /*iff|bins|ignore bins|illegal bins */ bin items);

C.17 File pss/covergroup_cross.h

#pragma once

#include "pss/covergroup.h"

#include "pss/covergroup options.h"
#include "pss/covergroup iff.h"
#include "pss/covergroup coverpoint.h"
namespace pss {

class cross : public coverpoint ({

public:

template <class... T> cross|(

const std::string &name,

const T&...
/*coverpointIattrlrand_attrlbinsIignore_binsIillegal_bins */ items) ;
template <class... T> cross|(

const std::string &name,

const iff &cp iff,

const T&...
/*coverpointIattrlrand_attrlbinsIignore_binsIillegal_bins */ items) ;
template <class... T> cross(

const std::string &name,

const options &cp_options,

const T&...
/*coverpoint|attr|rand attr|bins|ignore bins|illegal bins */ items) ;
template <class... T> cross(

const std::string &name,

const iff &cp_ 1iff,

const options &cp_options,

const T&...
/*coverpoint|attr|rand attr|bins|ignore bins|illegal bins */ items) ;

Copyright © 2021 Accellera. All rights reserved.
496

Portable Test and Stimulus Standard 2.0 — April 2021

C.18 File pss/covergroup_iff.h

#pragma once
#include "pss/detail/algebExpr.h"
namespace pss {
class 1ff {
public:

iff (const detail::AlgebExpr &expr);
bi

C.19 File pss/covergroup_inst.h

#pragma once

#include "covergroup.h"

#include "covergroup options.h"

#include <functional>

namespace pss {

template <class T=covergroup> class covergroup inst ({

public:

covergroup inst (
const std::string &name,
const options &opts) ;

template <class... R> covergroup inst(
const std::string &name,
const options &opts,
const R&... ports);

template <class... R> covergroup inst(
const std::string &name,
const R&... ports);

}i
template <> class covergroup inst<covergroup> {
public:
template <class... R> covergroup inst(
const std::string &name,
std::function<void (void) > body) ;

C.20 File pss/covergroup_options.h

#pragma once
#include "covergroup.h"
namespace pss {
class weight {
public:
weight (uint32 t w);
}i
class goal {
public:
goal (uint32 t w);
}i
class name {
public:
name (const std::string &name);

Copyright © 2021 Accellera. All rights reserved.
497

Portable Test and Stimulus Standard 2.0 — April 2021

}i
class comment {
public:
comment (const std::string &name);
}i
class detect overlap {
public:
detect overlap(bool 1);
b
class at least {
public:
at least (uint32 t w);
}i
class auto bin max {
public:
auto _bin max(uint32 t m);
}i
class per instance {
public:
per instance (bool is per instance);
b
class options {
public:
template <class... O> options(
const O&... /*
weight
| goal
| name
| comment
| detect overlap
| at least
| auto_bin max
| per instance */ options);
b
class type options {

public:
template <class... O> type options(
const 0&... /*
weight
| goal

| comment */ options);

C.21 File pss/ctrl_flow.h

#pragma once
#include "pss/detail/Stmt.h"
namespace pss {

class choice {

public:
// Specifies a case-branch statement
template <class... R>

choice(const range &range,

Copyright © 2021 Accellera. All rights reserved.
498

Portable Test and Stimulus Standard 2.0 — April 2021

R&&... /*detail::Stmt|std::function<void(void)>|sequence&&*/
stmts) { /* Implementation specific */ }

b

class default choice {

public:
template <class... R>
default choice(R&&... /* detail::Stmt std::function<void (void) >

sequence&&*/ stmts) { /* Implementation specific */ }

b

class match : public detail::Stmt {

public:
template <class... R>
match (const cond &c,

R&&... /* choice|default choice */ stmts);

b

/// Declare a sequence block
class sequence : public detail::Stmt {

public:
// Constructor
template < class... R >
sequence (R&&... /* detail::Stmt|detail::ExecStmt */ r) { /* Implementation

specific */ }
b

/// Declare a repeat statement
class repeat : public detail::Stmt {
public:
/// Declare a repeat statement
repeat (const detail::AlgebExpr& count,
const detail::Stmt& activity

)

/// Declare a repeat statement

repeat (const attr<int>& iter,
const detail::AlgebExpré& count,
const detail::Stmt& activity

)

/// Declare a procedural repeat (count) statement
repeat (const detail::AlgebExpré& count,
std::function<void(void)> loop_ stmts
) i

/// Declare a procedural repeat (count) statement with iterator
repeat (const attr<int>& iter,
const detail::AlgebExpré& count,
std::function<void(void)> loop_ stmts
)
i

/// Declare a repeat-while statement
class repeat while : public detail::Stmt ({

public:
/// Declare a repeat-while statement

Copyright © 2021 Accellera. All rights reserved.
499

Portable Test and Stimulus Standard 2.0 — April 2021

repeat while(const detail::Stmté& activity,
const condé& a cond

);

/// Declare a procedural repeat-while statement
repeat while(std::function<void(void)> loop stmts,
const cond& a cond
);
}i

/// Declare a while do statement
class while do : public detail::Stmt {
public:
/// Declare a procedural while do statement
while do(const cond& a cond,
const detail::Stmt& loop stmts

)

/// Declare a procedural while do statement
while do(const cond& a cond,
std::function<void(void)> loop_ stmts
);
i

/// Declare pss_return
class pss_return {
public
// Constructor
pss_return (void);
// Constructor
pss_return(const detail::AlgebExpré& expr);

b

/// Declare pss_break
class pss break {
public
// Constructor
pss_break (void) ;
}i

/// Declare pss_continue
class pss_continue {
public
// Constructor
pss_continue (void);

b

} // namespace pss

C.22 File pss/default_disable.h

#pragma once
#include "pss/detail/algebExpr.h"
namespace pss {
/// Declare default disable constraint
template < class T >
class default disable : public detail::AlgebExpr {

Copyright © 2021 Accellera. All rights reserved.
500

Portable Test and Stimulus Standard 2.0 — April 2021

public:
default disable (const rand attr<T>& attribute);
}i
}; // namespace pss

C.23 File pss/default_value.h

#pragma once
#include "pss/detail/algebExpr.h"
namespace pss {
/// Declare default value constraint
template < class T >
class default value : public detail::AlgebExpr {
public:
default _value (const rand attr<T>& attribute,
const detail::AlgebExpr& default expr);
}i

}; // namespace pss

C.24 File pss/enumeration.h

#pragma once
#include "pss/detail/enumerationBase.h"
#include "pss/scope.h"
namespace pss {
/// Declare an enumeration
class enumeration : public detail::EnumerationBase {

public:
/// Constructor
enumeration (const scopeé& s);
/// Default Constructor
enumeration ();
/// Destructor
~enumeration ();

protected:
class pss_enum values {
public:

__pss_enum values (enumeration* context, const std::string& s);
bi
template <class T>
enumeration& operator=(const T& t);
bi

}; // namespace pss

#define PSS ENUM(class name, ...)
class class name : public enumeration ({
public:
class_name (const scope& s) : enumeration (this) {}

enum _ pss_##class_name {
VA _ARGS
i

__pss_enum values _ pss _enum values {this, # VA ARGS };

class_name() {}
class_name (const _ pss_##class_name e) {

PP A O

Copyright © 2021 Accellera. All rights reserved.
501

Portable Test and Stimulus Standard 2.0 — April 2021

enumeration: :operator=(e);

class_nameé& operator=(const _ pss_ ##class name e) {
enumeration: :operator=(e);
return *this;

}
#define PSS _EXTEND_ ENUM(ext name, base name, ...)
class ext name : public base name {
public:
ext name (const scope& s) : base name (this) {}

enum __ pss_##ext name ({
VA _ARGS
i

__pss_enum values _ pss _enum values {this, # VA ARGS };

ext name () {}
ext name (const _ pss_##ext name e) {
enumeration: :operator=(e);

}

ext name& operator=(const _ pss_ ##ext name e) {
enumeration: :operator=(e);
return *this;
}
bi
extend enum<base name, ext name> pss ##ext name
#include "pss/timpl/enumeration.t"

C.25 File pss/exec.h

#pragma once
#include <functional>
#include "pss/detail/execBase.h"
#include "pss/detail/attrCommon.h"
namespace pss {
class sequence; // forward declaration
/// Declare an exec block
class exec : public detail::ExecBase {
public:
/// Types of exec blocks
enum ExecKind {
run_start,
header,
declaration,
init down,
init up,
init,
pre solve,
post solve,
body,
run_end,
file

Copyright © 2021 Accellera. All rights reserved.
502

PP

P G O A G A S e

Portable Test and Stimulus Standard 2.0 — April 2021

/// Declare inline exec
exec (
ExecKind kind,
std::initializer list<detail::AttrCommon>&& write vars
) i
/// Declare target template exec
exec (
ExecKind kind,
const char* language or file,
const char* target template);
exec (
ExecKind kind,
std::string&& language or file,
std::string&& target template);
/// Declare native exec - with single exec statement
exec (
ExecKind kind,
const detail::ExecStmté& r

)

/// Declare native exec - with single AlgebExpr statement
exec (
ExecKind kind,
const detail::AlgebExpré& r
)
/// Declare native exec - with sequence statement
exec (
ExecKind kind,
const detail::Stmt& /* sequence & */ r
) i
/// Declare generative procedural-interface exec
exec (
ExecKind kind,
std::function<void()> genfunc
) i
/// Declare generative target-template exec
exec (
ExecKind kind,
std::string&& language or file,
std::function<void(std::ostream&)> genfunc
) i
i
}; // namespace pss
#include "pss/timpl/exec.t"

C.26 File pss/export_action.h

#pragma once
#include <vector>
#include "pss/scope.h"
#include "pss/bit.h"
#include "pss/width.h"
#include "pss/range.h"
#include "pss/detail/exportActionParam.h"
namespace pss {
class export action base {
public:

Copyright © 2021 Accellera. All rights reserved.
503

Portable Test and Stimulus Standard 2.0 — April 2021

// Export action kinds
enum kind { solve, target };
template <class T> class in
public:
bi

}i

/// Declare an export action

public detail::ExportActionParam {

template <class T=int> class export action

public export action base {

public:

using export action base::in;

export action(

const std::vector<detail::ExportActionParam> ¶ms) {};
export _action(

kind,

const std::vector<detail::ExportActionParam> ¶ms) {};

b

template <> class export action base::in<bit>

public
public:
in (const
in (const
in (const
in (const

scope
scope
scope
scope

&name) {};
&name,
&name,
&name,

b

detail::ExportActionParam {

const width &w) {};
const range &rng) {};
const width &w,

const range &rng) {};

template <> class export action base::in<int>

public
public:
in(const
in (const
in (const
in (const

&name) {};
&name,
&name,
&name,

scope
scope
scope
scope
b

detail::ExportActionParam {

const width &w) {};
const range &rng) {};
const width &w,

const range &rng) {};

template <> class export action base::in<std::string>
public detail::ExportActionParam {

public:
in (const scope &name) {};
in(const scope &name,
b

C.27 File pss/extend.h

#pragma once
namespace pss {
/// Extend a structure
template < class Foundation,
class extend structure {
public:
extend structure();
}i
/// Extend an action
template < class Foundation,
class extend action {
public:
extend action();

b

const range &rng) {};

class Extension>

class Extension>

Copyright © 2021 Accellera. All rights reserved.

504

Portable Test and Stimulus Standard 2.0 — April 2021

/// Extend a component
template < class Foundation, class Extension>
class extend component {
public:
extend component () ;
i
/// Extend an enum
template < class Foundation, class Extension>
class extend enum ({
public:
extend enum() ;
bi
}; // namespace pss
#include "pss/timpl/extend.t"

C.28 File pss/forall.h

#pragma once
#include "pss/detail/sharedExpr.h"
#include "pss/iterator.h"
namespace pss {
/// Declare a forall constraint item
template < class T >
class forall : public detail::SharedExpr ({
public:
forall (const iterator<T>& iter var,
const detail::AlgebExpré& constraint
) i
}i
}; // namespace pss
#include "pss/timpl/forall.t"

C.29 File pss/foreach.h

#pragma once
#include "pss/bit.h"
#include "pss/vec.h"
#include "pss/detail/sharedExpr.h"
namespace pss {
template <class T> class attr; // forward declaration
template <class T> class rand attr; // forward declaration
namespace detail {
class AlgebExpr; // forward reference
class Stmt; // forward reference
bi
/// Declare a foreach statement
class foreach : public detail::SharedExpr ({
public:
/// Declare a foreach activity statement
foreach(const attr<int>& iter,
const rand attr<vec<int>>& array,
const detail::Stmt& activity
)
/// Declare a foreach activity statement
foreach(const attr<int>& iter,
const rand attr<vec<bit>>& array,

Copyright © 2021 Accellera. All rights reserved.
505

Portable Test and Stimulus Standard 2.0 — April 2021

const detail::Stmt& activity
);
/// Declare a foreach activity statement
template < class T >
foreach(const attr<int>& iter,
const rand attr<vec<T>>& array,
const detail::Stmt& activity
);
/// Declare a foreach activity statement
foreach(const attr<int>& iter,
const attr<vec<int>>& array,
const detail::Stmt& activity
)
/// Declare a foreach activity statement
foreach(const attr<int>& iter,
const attr<vec<bit>>& array,
const detail::Stmt& activity
)
/// Declare a foreach activity statement
template < class T >
foreach(const attr<int>& iter,
const attr<vec<T>>& array,
const detail::Stmté& activity
)
/// Declare a foreach constraint statement
foreach(const attr<int>& iter,
const rand attr<vec<int>>& array,
const detail::AlgebExpré& constraint
)
/// Declare a foreach constraint statement
foreach(const attr<int>& iter,
const rand attr<vec<bit>>& array,
const detail::AlgebExpré& constraint
)
/// Declare a foreach constraint statement
template < class T >
foreach(const attr<int>& iter,
const rand attr<vec<T>>& array,
const detail::AlgebExpré& constraint
)
/// Declare a foreach constraint statement
foreach(const attr<int>& iter,
const attr<vec<int>>& array,
const detail::AlgebExpré& constraint
) ;
/// Declare a foreach constraint statement
foreach(const attr<int>& iter,
const attr<vec<bit>>& array,
const detail::AlgebExpr& constraint
)
/// Declare a foreach constraint statement
template < class T >
foreach(const attr<int>& iter,
const attr<vec<T>>& array,
const detail::AlgebExpr& constraint
)
/// Disambiguate a foreach sharedExpr statement
foreach(const attr<int>& iter,
const rand attr<vec<int>>& array,

Copyright © 2021 Accellera. All rights reserved.
506

Portable Test and Stimulus Standard 2.0 — April 2021

const detail::SharedExpr& sharedExpr
)
/// Disambiguate a foreach sharedExpr statement
foreach(const attr<int>& iter,
const rand attr<vec<bit>>& array,
const detail::SharedExpr& sharedExpr
)
/// Disambiguate a foreach sharedExpr statement
template < class T >
foreach(const attr<int>& iter,
const rand attr<vec<T>>& array,
const detail::SharedExpr& sharedExpr
)
/// Disambiguate a foreach sharedExpr statement
foreach(const attr<int>& iter,
const attr<vec<int>>& array,
const detail::SharedExpré& sharedExpr
)
/// Disambiguate a foreach sharedExpr statement
foreach(const attr<int>& iter,
const attr<vec<bit>>& array,
const detail::SharedExpré& sharedExpr
) i
/// Disambiguate a foreach sharedExpr statement
template < class T >
foreach(const attr<int>& iter,
const attr<vec<T>>& array,
const detail::SharedExpré& sharedExpr
) i
/// Declare a foreach procedural construct
foreach(const attr<int> &iter,
const attr<vec<int>> &array,
std::function<void(void)> loop stmts
)
foreach(const attr<int> &iter,
const rand attr<vec<int>> garray,
std::function<void(void)> loop_ stmts

);

/// Declare a foreach procedural construct
foreach(const attr<int> &iter,
const attr<vec<bit>> &array,
std::function<void(void)> loop_ stmts
)
foreach(const attr<int> &iter,
const rand attr<vec<bit>> garray,
std::function<void(void)> loop stmts

)

/// Declare a foreach procedural construct
template < class T >
foreach(const attr<T> &iter,
const attr<vec<T>> &array,
std::function<void(void)> loop stmts
);
template < class T >
foreach(const attr<T> ¢&iter,
const rand attr<vec<T>> g&array,
std::function<void(void)> loop stmts

Copyright © 2021 Accellera. All rights reserved.

507

Portable Test and Stimulus Standard 2.0 — April 2021

)i
bi
}; // namespace pss
#include "pss/timpl/foreach.t"

C.30 File pss/function.h

#pragma once

#include "pss/scope.h"

#include "pss/bit.h"

#include "pss/width.h"

#include "pss/range.h"

#include "pss/detail/FunctionParam.h"

#include "pss/detail/FunctionResult.h"

#include "pss/attr.h"

namespace pss {
template <class T> class arg;
template <class T> class in_arg;
template <class T> class out arg;
template <class T> class inout arg;
template <class T> class result;
/// Import function availability
enum kind { solve, target };
template<typename T> class function;

template<typename R, typename... Args>
class function<R(Args...)> {
public:

// CTOR for the case with no procedural specification
function (const scope &name
, R result
, Args... args
)
// CTOR for the case with pure modifier and no procedural specification
function (const scope &name
, bool is pure
, R result
, Args... args
) ;
template <class... T> R operator () (
const T&... /* detail::AlgebExpr */ params) ;
/// Declare target-template function
function (const scope &name
, const std::string &language
, R result
, Args... args
, const std::string &target template
)
// Declare function specified procedurally
function (const scope &name
, R result
, Args... args
, std::function<void(Args...)> ast builder
)
// Declare function specified procedurally with pure modifier
function (const scope &name
, bool is pure
, R result

Copyright © 2021 Accellera. All rights reserved.
508

Portable Test and Stimulus Standard 2.0 — April 2021

, Args... args
std::function<void(Args...)> ast builder

’
)i
bi
template<typename T> class import func;
template<typename R, typename... Args>
class import func<function<R(Args...)>> {
public:
/// Declare import function availability
import func(const scope &name
, const kind a kind
) i
/// Declare import function language
import func(const scope &name
, const std::string &language
)
/// Declare import function language and availability
import func(const scope &name
, const kind a kind
, const std::string &language
)i
template <class... T> R operator() (
const T&... /* detail::AlgebExpr */ params) ;
i

// Some simplifications when R = result<void>

template<typename... Args>
class function<result<void> (Args...)> {
public:

// CTOR for the case with no procedural specification
function (const scope &name
, Args... args
)
// CTOR for the case with pure modifier and no procedural specification
function (const scope &name
, bool is pure

, Args... args
)
template <class... T> result<void> operator () (
const T&... /* detail::AlgebExpr */ params);
/// Declare target-template function
function (const scope &name
, const std::string &language
, Args... args

const std::string &target template

14
)
// Declare function specified procedurally
function (const scope &name
, Args... args
std::function<void(Args...)> ast builder

’
)i
// Declare function specified procedurally with pure modifier
function (const scope &name

, bool is pure

, Args... args
std::function<void(Args...)> ast builder

’
)i
}i
template<typename... Args>
class import func<function<result<void> (Args...)>> {

Copyright © 2021 Accellera. All rights reserved.
509

Portable Test and Stimulus Standard 2.0 — April 2021

public:
/// Declare import function availability
import func(const scope &name

, const kind a kind
)
/// Declare import function language
import func(const scope &name
, const std::string &language
)
/// Declare import function language and availability
import_func(const scope &name
, const kind a kind
, const std::string &language
);
template <class... T> result<void> operator () (
const T&... /* detail::AlgebExpr */ params);
}i
/// Template specialization for arg
template <> class arg<bit> : public detail::FunctionParam, public attr<bit> {
public:
arg(const scope é&name);
arg(const scope &name, const width &w);
arg(const scope &name, const range &rng);
arg(const scope &name, const width &w, const range &rng);
using attr<bit>::operator=;

b

template <> class arg<int> : public detail::FunctionParam,public attr<int> {
public:

arg(const scope é&name);

arg(const scope &name, const width &w);

arg(const scope &name, const range &rng);

arg(const scope &name, const width &w, const range &rng);

using attr<int>::operator=;

b

template <> class arg<attr vec<bit>> : public detail::FunctionParam, public
attr vec<bit> {

public:
arg(const scope& name, const std::size_t count) ;
arg(const scope &name, const std::size t count, const width &w);
arg(const scope &name, const std::sizeit count, const range &rng);
arg(const scope &name, const std::size t count, const width &w,

const range &rng);
}i

template <> class arg<attr vec<int>> : public detail::FunctionParam, public
attr vec<int> {
public:
arg(const scope& name, const std::size_t count) ;
arg(const scope &name, const std::size_t count, const width &w);
arg(const scope &name, const std::size t count, const range &rng);
arg(const scope &name, const std::size t count, const width &w,
const range &rng);
}i
/// Template specialization for inputs
template <> class in_arg<bit> : public detail::FunctionParam {
public:
in arg(const scope &name);

Copyright © 2021 Accellera. All rights reserved.
510

b

template <> class in_arg<int>

in _arg(const
in_arg(const
in_arg(const
in arg(const
in arg(const

in_arg(const

in_arg(const

public:

b

in_arg(const
in_arg(const
in arg(const
in arg(const
in arg(const
in_arg(const

in_arg(const

in arg(const

Portable Test and Stimulus Standard 2.0 — April 2021

scope &name,
scope &name,
scope &name,
scope &name,
scope &name,

scope &nhame,

scope &name,

scope &name) ;
scope &name,
scope &name,
scope &name,
scope &name,
scope &name,

scope é&name,

scope &name,

/// Template specialization
template <> class out arg<bit>
public:

b

out_arg
out arg
out arg
out arg

const
const
const
const

scope &name)
scope &name,
scope &name,
scope &name,

const
const
const
const
const
const
const
const
const
const

const
const
const
const
const
const
const
const
const
const

width &w);
range &rng);
width &w, const range &rng);

detail::AlgebExpr &default param);
width &w,

detail::AlgebExpr &default param);
range &rng,

detail::AlgebExpr &default param);
width &w, const range &rng,
detail::AlgebExpr &default param);

public detail::FunctionParam {

width &w) ;

range &rng);

width &w, const range &rng);
detail::AlgebExpr &default param);
width &w,

detail::AlgebExpr &default param);
range &rng,

detail::AlgebExpr &default param);
width &w, const range é&rng,
detail::AlgebExpr &default param);

for outputs

’

public detail::FunctionParam {

const width &w);
const range &rng);

const width &w,

template <> class out arg<int>
public:

b

out arg(const
out arg(const
out arg(const
out arg(const

scope &name)
scope &name,
scope &name,
scope &name,

’

const range &rng);

public detail::FunctionParam {

const width &w);
const range &rng);

const width &w,

const range &rng);

/// Template specialization for inout args
template <> class inout arg<bit>
public:

i

template <> class

inout arg(const
const
const
inout arg(const

inout arg
inout arg

(
(
(
(

public:

b

inout arg(const
inout arg(const
inout arg(const
inout arg(const

scope &name) ;
scope &name,
scope &name,
scope &name,

inout arg<int>

scope &name) ;
scope &name,
scope &name,
scope &name,

public detail::FunctionParam {

const width &w);
const range &rng);
const width &w,

const range &rng);

public detail::FunctionParam {

const width &w);
const range &rng);
const width &w,

const range &rng);

/// Template specialization for results

template <> class result<bit>

public:

result () ;

public detail::FunctionResult {

Copyright © 2021 Accellera. All rights reserved.

511

Portable Test and Stimulus Standard 2.0 — April 2021

result (const width &w);
result (const range &rng);
result (const width &w, const range &rng);
}i
template <> class result<int> : public detail::FunctionResult {

public:
result () ;
result (const width &w);
result (const range &rng);
(

result (const width &w, const range &rng);
}i
template <> class result<void> : public detail::FunctionResult {
public:
result () ;
}i
}
#include "pss/timpl/function.t"

C.31 File pssl/if _then.h

#pragma once
#include "pss/detail/sharedExpr.h"
#include <functional>
namespace pss {
class sequence; // forward declaration
namespace detail {
class AlgebExpr; // forward reference
class Stmt; // forward reference
i
/// Declare if-then statement
class if then : public detail::SharedExpr {
public:
/// Declare if-then activity statement
if then (const condé& a cond,
const detail::Stmté& true expr
)
/// Declare if-then constraint statement
if then (const cond& a cond,
const detail::AlgebExpré& true expr
) i
/// Disambiguate if-then sharedExpr statement
if then (const cond& a cond,
const detail::SharedExpr& true expr
)
///Declare if-then procedural statement
if then (const condé& a cond,
std::function<void(void)> true stmts
)
}i
/// Declare if-then-else statement
class if then else : public detail::SharedExpr ({
public:
/// Declare if-then-else activity statement
if then else (const condé& a cond,
const detail::Stmt& true expr,
const detail::Stmt& false expr

);

Copyright © 2021 Accellera. All rights reserved.
512

Portable Test and Stimulus Standard 2.0 — April 2021

/// Declare if-then-else constraint statement
if then else (const cond& a cond,
const detail::AlgebExpr& true expr,
const detail::AlgebExpr& false expr
) i
/// Disambiguate if-then-else sharedExpr activity statement
if then else (const condé& a cond,
const detail::SharedExpré& true expr,
const detail::Stmt& false expr
)
/// Disambiguate if-then-else sharedExpr activity statement
if then else (const cond& a cond,
const detail::Stmté& true expr,
const detail::SharedExpré& false expr
)7
/// Disambiguate if-then-else sharedExpr constraint statement
if then else (const condé& a cond,
const detail::SharedExpré& true expr,
const detail::AlgebExpr& false expr
)
/// Disambiguate if-then-else sharedExpr constraint statement
if then else (const condé& a cond,
const detail::AlgebExpr& true expr,
const detail::SharedExpré& false expr
)
/// Disambiguate if-then-else sharedExpr statement
if then else (const cond& a cond,
const detail::SharedExpré& true expr,
const detail::SharedExpr& false expr
) i
/// Declare if-then-else procedural statement
if then else (const cond& a_ cond,
std::function<void(void)> true stmts,
std::function<void(void)> false stmts

)

/// Declare if-then-else procedural statement

if then else (const cond& a_ cond,
const detail::Stmt& /* sequence & */ true stmts,
std::function<void(void)> false stmts

)

/// Declare if-then-else procedural statement
if then else (const cond& a_ cond,
std::function<void(void)> true stmts,
const detail::Stmté& /* sequence & */ false stmts
)i
bi

}; // namespace pss

C.32 File pss/import_class.h

#pragma once
#include "pss/scope.h"
#include "pss/detail/importClassBase.h"
namespace pss {
/// Declare an import class

Copyright © 2021 Accellera. All rights reserved.
513

Portable Test and Stimulus Standard 2.0 — April 2021

class import class : public detail::ImportClassBase {
public:

/// Constructor

import class(const scope &name);

/// Destructor

~import class();

b

C.33 File pss/in.h

#pragma once
#include "pss/range.h"
#include "pss/attr.h"
#include "pss/rand attr.h"
namespace pss |
/// Declare a set membership
class in : public detail::AlgebExpr {
public:
in (const attr<int>& a var,
const range& a_range
)i
in (const attr<bit>& a var,
const range& a_range
);
in (const rand_attr<int>& a_var,
const range& a_range
)i
in (const rand attr<bit>& a var,
const range& a_range
)i
template < class T>
in (const rand attr<T>& a_var,
const range& a_range
)i
bi

}; // namespace pss

C.34 File pss/input.h

#pragma once
#include "pss/detail/inputBase.h"
#include "pss/scope.h"
namespace pss {
/// Declare an action input
template<class T>
class input : public detail::InputBase {
public:
/// Constructor
input (const scopeé& s);
/// Destructor
~input () ;
/// RAccess content
T* operator-> ();
/// Access content
T& operator* ();

Copyright © 2021 Accellera. All rights reserved.
514

Portable Test and Stimulus Standard 2.0 — April 2021

}i
}; // namespace pss
#include "pss/timpl/input.t"

C.35 File pssliterator.h

#pragma once
#include "pss/detail/attrTBase.h"

namespace pss {
/// Declare an action handle
template<class T>
class iterator : public detail::AttrTBase {
public:
iterator (const scope& name);
}i
}; // namespace pss
#include "pss/timpl/iterator.t"

C.36 File pss/lock.h

#pragma once
#include "pss/detail/lockBase.h"
namespace pss {
/// Claim a locked resource
template<class T>
class lock : public detail::LockBase {
public:
/// Constructor
lock (const scopeé& name);
/// Destructor
~lock () ;
/// Access content
T* operator-> ();
/// Access content
T& operator* ();
b
}; // namespace pss
#include "pss/timpl/lock.t"

C.37 File pss/output.h

#pragma once
#include "pss/detail/outputBase.h"
#include "pss/scope.h"
namespace pss {
/// Declare an action output
template<class T>
class output : public detail::OutputBase {
public:
/// Constructor
output (const scope& s);
/// Destructor
~output () ;

Copyright © 2021 Accellera. All rights reserved.
515

i
#i

C.38

#p

Portable Test and Stimulus Standard 2.0 — April 2021

/// Access content

T* operator-> ();
/// Access content
T& operator* ();

}i
// namespace pss
nclude "pss/timpl/output.t"

File pss/override.h

ragma once

namespace pss {

b

/// Override a type
template < class Foundation, class Override>
class override type {
public:
override type();
}i
/// Override an instance
template < class Override >
class override instance {
public:
/// Override an instance of a structure
template <class T>
override instance (const attr<T>& inst);
/// Override an instance of a rand structure
template <class T>
override instance (const rand attr<T>& inst);
/// Override an instance of a component instance
template <class T>
override instance (const comp inst<T>& inst);
/// Override an action instance
template <class T>
override instance (const action handle<T>& inst);
bi

// namespace pss

#include "pss/timpl/override.t"

C.39

File pss/pool.h

#pragma once

#include <string>

#include "pss/detail/poolBase.h"
namespace pss {

b

/// Declare a pool
template <class T>
class pool : public detail::PoolBase {
public:
/// Constructor
pool (const scope& name, std::size t count = 1);
/// Destructor
~pool () ;
}i

// namespace pss

#include "pss/timpl/pool.t"

Copyright © 2021 Accellera. All rights reserved.
516

Portable Test and Stimulus Standard 2.0 — April 2021

C.40 File pss/rand_attr.h

#pragma once

#include <string>
#include <memory>
#include <list>

#include "pss/bit.h"
#include "pss/vec.h"
#include "pss/scope.h"
#include "pss/width.h"
#include "pss/range.h"
#include "pss/structure.h"

#include "pss/detail/randAttrTBase.h"
#include "pss/detail/randAttrIntBase.h"
#include "pss/detail/randAttrBitBase.h"
#include "pss/detail/randAttrStringBase.h"
#include "pss/detail/randAttrBoolBase.h"
#include "pss/detail/randAttrCompBase.h"

#include "pss/detail/randAttrVecTBase.h"
#include "pss/detail/randAttrVecIntBase.h"
#include "pss/detail/randAttrVecBitBase.h"
#include "pss/detail/randAttrVecStringBase.h"

#include "pss/detail/algebExpr.h"
#include "pss/detail/execStmt.h"

namespace pss {

template <class T>
class attr; // forward reference

/// Primary template for enums and structs
template <class T>
class rand attr : public detail::RandAttrTBase ({
public:

/// Constructor

rand attr (const scope& name);

/// Constructor defining range

rand attr (const scope& name, const rangeé& a range);

/// Copy constructor

rand attr (const rand attr<T>& other);

/// Struct access

T* operator-> ();

/// Struct access

T& operator* ();

/// Enumerator access

T& vall();

/// Exec statement assignment

detail::ExecStmt operator= (const detail::AlgebExpr& value);
}i

/// Template specialization for rand int
template <>
class rand attr<int> : public detail::RandAttrIntBase {

Copyright © 2021 Accellera. All rights reserved.
517

Portable Test and Stimulus Standard 2.0 — April 2021

public:
/// Constructor
rand attr (const scopeé& name);
/// Constructor defining width
rand attr (const scopeé& name, const widthé& a width);
/// Constructor defining range
rand attr (const scope& name, const range& a_ range);
/// Constructor defining width and range
rand attr (const scope& name, const widthé& a width, const range& a range);
/// Copy constructor
rand attr (const rand attr<int>& other);
/// Access to underlying data
int& val();
/// Exec statement assignment
detail::ExecStmt operator= (const detail::AlgebExpré& value);
detail::ExecStmt operator+= (const detail::AlgebExpr& value);
detail::ExecStmt operator-= (const detail::AlgebExpr& value);
detail::ExecStmt operator<<= (const detail::AlgebExpré& value);
detail::ExecStmt operator>>= (const detail::AlgebExpr& value)
detail::ExecStmt operator&= (const detail::AlgebExpr& value);
detail::ExecStmt operator|= (const detail::AlgebExpr& value);
bi

’

/// Template specialization for rand bit
template <>
class rand attr<bit> : public detail::RandAttrBitBase ({
public:
/// Constructor
rand attr (const scopeé& name);
/// Constructor defining width
rand attr (const scope& name, const width& a width);
/// Constructor defining range
rand attr (const scope& name, const range& a range);
/// Constructor defining width and range
rand attr (const scope& name, const widthé& a width, const range& a range);
/// Copy constructor
rand attr(const rand attr<bit>& other);
/// Access to underlying data
bits val();
/// Exec statement assignment
detail::ExecStmt operator= (const detail::AlgebExpr& value);
detail::ExecStmt operator+= (const detail::AlgebExpré& value);
detail::ExecStmt operator-= (const detail::AlgebExpré& value);
detail::ExecStmt operator<<= (const detail::AlgebExpré& value);
detail::ExecStmt operator>>= (const detail::AlgebExpré& value);
detail::ExecStmt operator&= (const detail::AlgebExpr& value);
detail::ExecStmt operator|= (const detail::AlgebExpr& value);
bi

/// Template specialization for rand string
template <>
class rand attr<std::string> : public detail::RandAttrStringBase ({
public:
/// Constructor
rand attr (const scopeé& name);
/// Constructor defining range
rand attr (const scopeé& s, const range& a range);
/// Copy constructor

Copyright © 2021 Accellera. All rights reserved.
518

Portable Test and Stimulus Standard 2.0 — April 2021

rand attr(const rand attr<std::string>& other);

/// Access to underlying data

std::string& val();

/// Exec statement assignment

detail::ExecStmt operator= (const detail::AlgebExpré& value);
bi

/// Template specialization for rand bool
template <>
class rand attr<bool> : public detail::RandAttrBoolBase {
public:

/// Constructor

rand attr (const scope& name);

/// Copy constructor

rand attr(const rand attr<bool>& other);

/// Access to underlying data

bool val():;

/// Exec statement assignment

detail::ExecStmt operator= (const detail::AlgebExpr& value);
}i

/// Template specialization for array of rand ints
template <>
class rand attr<vec<int>> : public detail::RandAttrVecIntBase {
public:
/// Constructor defining array size
rand attr (const scope& name, const std::size t count);
/// Constructor defining array size and element width
rand attr(const scope& name, const std::size t count,
const width& a width);
/// Constructor defining array size and element range
rand attr (const scope& name, const std::size t count,
const range& a_range);
/// Constructor defining array size and element width and range
rand attr(const scope& name, const std::size t count,
const width& a width, const range& a range);
/// Access to specific element
rand attr<int>& operator([] (const std::size t idx);
/// Constraint on randomized index
detail::AlgebExpr operator[] (const detail::AlgebExpré& idx);
/// Get size of array
std::size t size() const;
/// Constraint on sum of array
detail::AlgebExpr sum() const;
}i

/// Template specialization for array of rand bits
template <>
class rand attr<vec<bit>> : public detail::RandAttrVecBitBase ({
public:
/// Constructor defining array size
rand attr(const scope& name, const std::size t count);
/// Constructor defining array size and element width
rand attr(const scope& name, const std::size t count,
const widthé& a width);
/// Constructor defining array size and element range
rand attr (const scope& name, const std::size t count,
const range& a_ range);

Copyright © 2021 Accellera. All rights reserved.
519

Portable Test and Stimulus Standard 2.0 — April 2021

/// Constructor defining array size and element width and range
rand attr (const scope& name, const std::size t count,
const width& a width, const range& a range);
/// Access to specific element
rand attr<bit>& operator([] (const std::size t idx);
/// Constraint on randomized index
detail::AlgebExpr operator[] (const detail::AlgebExpré& idx);
/// Get size of array
std::size t size() const;
/// Constraint on sum of array
detail::AlgebExpr sum() const;
bi

/// Template specialization for array of rand strings
template <>
class rand attr<vec<std::string>> : public detail::RandAttrVecStringBase {
public:

/// Constructor defining array size

rand attr(const scope& name, const std::size t count);

/// Constructor defining array size and element range

rand attr (const scope& name, const std::size t count,

const range& a_range);

/// Access to specific element

rand attr<std::string>& operator[] (const std::size t idx);

/// Constraint on randomized index

detail::AlgebExpr operator[] (const detail::AlgebExpré& idx);

/// Get size of array

std::size t size() const;

b

// Template specialization for arrays of rand enums and arrays of rand structs
template <class T>
class rand attr<vec<T>> : public detail::RandAttrVecTBase {
public:
rand attr(const scope& name, const std::size t count);
rand attr (const scope& name, const std::sizeit count, const rangeé&
a_range);
rand attr<T>& operator[] (const std::size t idx);
detail::AlgebExpr operator[] (const detail::AlgebExpré& idx);
std::size t size() const;

i

template < class T >
using rand attr vec = rand attr< vec <T> >;

}; // namespace pss

#include "pss/timpl/rand attr.t"

C.41 File pss/range.h

#pragma once
#include <vector>
#include "pss/detail/rangeBase.h"
namespace pss {
class Lower {

Copyright © 2021 Accellera. All rights reserved.
520

Portable Test and Stimulus Standard 2.0 — April 2021

public:

}i

// Used to specify a range that is bounded

// by the domain minimum

const Lower lower;

class Upper {

public:

}i

// Used to specify a range that is bounded

// by the domain maximum

const Upper upper;

/// Declare domain of a numeric attribute

class range : public detail::RangeBase {

public:
/// Declare a range of values
range (const detail::AlgebExpr& lhs, const detail::AlgebExpré& rhs);
range (const Lower& lhs, const detail::AlgebExpré& rhs);
range (const detail::AlgebExpr& lhs, const Upperé& rhs);
/// Declare a single value
range (const detail::AlgebExpré& value);
/// Copy constructor

range (const range& a_range);

/// Function chaining to declare another range of values

range& operator () (const detail::AlgebExpré& lhs, const detail::AlgebExpré&
rhs) ;

/// Function chaining to declare another single value

range& operator () (const detail::AlgebExpr& value);

}; // class range
}; // namespace pss

C.42 File pss/resource.h

#pragma once
#include "pss/detail/resourceBase.h"
#include "pss/scope.h"
#include "pss/rand attr.h"
namespace pss {
/// Declare a resource object
class resource : public detail::ResourceBase {
protected:
/// Constructor
resource (const scopeé& s);
/// Destructor
~resource () ;
public:
/// Get the instance id of this resource
rand attr<int> instance id;
/// In-line exec block
virtual void pre solve();
/// In-line exec block
virtual void post solve();
}i

}; // namespace pss

Copyright © 2021 Accellera. All rights reserved.
521

Portable Test and Stimulus Standard 2.0 — April 2021

C.43 File pss/scope.h

#pragma once

#include <string>

#include "pss/detail/scopeBase.h"
namespace pss {

/// Class to manage PSS object hierarchy introspection

class scope : public detail::ScopeBase {
public:
/// Constructor
scope (const char* name);
/// Constructor
scope (const std::stringé& name);
/// Constructor
template < class T > scope (T* s);
/// Destructor
~scope () ;
b
}; // namespace pss
/*! Convenience macro for PSS constructors */
#define PSS CTOR(C,P) public: C (const scope& p)
#include "pss/timpl/scope.t"

C.44 File pss/share.h

#pragma once
#include "pss/detail/shareBase.h"
namespace pss {
/// Claim a shared resource
template<class T>
class share : public detail::ShareBase {
public:
/// Constructor
share (const scopeé& name);
/// Destructor
~share () ;
/// Access content

T* operator-> ();
/// Access content
T& operator* ();

}i
}; // namespace pss
#include "pss/timpl/share.t"

C.45 File pss/state.h

#pragma once
#include "pss/detail/stateBase.h"
#include "pss/scope.h"
#include "pss/rand attr.h"
namespace pss {
/// Declare a state object
class state : public detail::StateBase {
protected:
/// Constructor

P (this)

Copyright © 2021 Accellera. All rights reserved.

522

{1

Portable Test and Stimulus Standard 2.0 — April 2021

state (const scopeé& s);
/// Destructor
~state () ;
public:
/// Test if this is the initial state
rand attr<bool> initial;
/// In-line exec block
virtual void pre solve();
/// In-line exec block
virtual void post solve();
}i
/// Return previous state of a state object
template <class T>
T* prev(T* this);
}; // namespace pss
#include "pss/timpl/state.t"

C.46 File pss/stream.h

#pragma once
#include "pss/detail/streamBase.h"
#include "pss/scope.h"
namespace pss {
/// Declare a stream object
class stream : public detail::StreamBase {
protected:
/// Constructor
stream (const scopeé& s);
/// Destructor
~stream () ;
public:
/// In-line exec block
virtual void pre solve();
/// In-line exec block
virtual void post solve();
}i

}; // namespace pss

C.47 File pss/structure.h

#pragma once
#include "pss/detail/structureBase.h"
#include "pss/scope.h"
namespace pss {
/// Declare a structure
class structure : public detail::StructureBase {
protected:
/// Constructor
structure (const scopeé& s);
/// Destructor
~structure () ;
public:
/// In-line exec block
virtual void pre solve();
/// In-line exec block
virtual void post solve();

Copyright © 2021 Accellera. All rights reserved.
523

Portable Test and Stimulus Standard 2.0 — April 2021

b

}; // namespace pss

C.48 File pss/symbol.h

#pragma once
namespace pss {
namespace detail {
class Stmt; // forward reference
}i
using symbol = detail::Stmt;
}i

C.49 File pss/type_decl.h

#pragma once
#include "pss/detail/typeDeclBase.h"
namespace pss {
template<class T>
class type decl : public detail::TypeDeclBase {
public:
type decl();
T* operator-> ();
T& operator* ();
}i
}; // namespace pss
#include "pss/timpl/type decl.t"

C.50 File pss/unique.h

#pragma once
#include <iostream>
#include <vector>
#include <cassert>
#include "pss/range.h"
#include "pss/vec.h"
#include "pss/detail/algebExpr.h"
namespace pss {
/// Declare an unique constraint
class unique : public detail::AlgebExpr {
public:
/// Declare unique constraint
template < class ... R >
unique (R&&... /* rand attr<T> */ r);
}i
}; // namespace pss
#include "pss/timpl/unique.t"

Copyright © 2021 Accellera. All rights reserved.
524

Portable Test and Stimulus Standard 2.0 — April 2021

C.51 File pss/vec.h

#pragma once
#include <vector>
namespace pss {
template < class T>
using vec = std::vector <T>;

b

C.52 File pss/width.h

#pragma once
#include "pss/detail/widthBase.h"
namespace pss {
/// Declare width of a numeric attribute
class width : public detail::WidthBase {
public:
/// Declare width as a range of bits
width (const std::size t& lhs, const std::size t& rhs);
/// Declare width in bits
width (const std::size t& size);
/// copy constructor
width (const widthé& a width);
b
}; // namespace pss

C.53 File pss/detail/algebExpr.h

#pragma once
#include <iostream>
#include <vector>
#include <cassert>
#include "pss/range.h"
#include "pss/vec.h"
#include "pss/comp_inst.h"
#include "pss/component.h"
#include "pss/detail/exprBase.h"
#include "pss/detail/sharedExpr.h"
namespace pss {
template <class T> class attr; // forward declaration
template <class T> class rand attr; // forward declaration
class coverpoint; // forward declaration
class dynamic_constraint; // forward declaration
template <class T> class result; // forward declaration
class coverpoint; // forward declaration
namespace detail {
template <class T> class comp_ref; // forward declaration
/// Construction of algebraic expressions
class AlgebExpr : public ExprBase {
public:
/// Default constructor
AlgebExpr () ;
AlgebExpr (const coverpoint é&cp);
/// Recognize a rand_attr<>
template < class T >

Copyright © 2021 Accellera. All rights reserved.
525

Portable Test and Stimulus Standard 2.0 — April 2021

AlgebExpr (const rand attr<T>& value);

/// Recognize an attr<>

template < class T >

AlgebExpr (const attr<T>& value);

/// Recognize a range() for in|()

AlgebExpr (const rangeé& value);

/// Recognize a comp_ inst<>

template < class T >

AlgebExpr (const comp_inst<T>& value) ;

/// Recognize a comp_ ref<>

template <class T>

AlgebExpr (const comp ref<T> &value);

/// Recognize a CompInstBase

AlgebExpr (const CompInstBase& value);

// Allow dynamic constraints to be referenced

// in constraint expressions

AlgebExpr (const dynamic constraint &c);

// /// Capture other values

// template < class T >

// AlgebExpr (const T& value);

/// Recognize integers

AlgebExpr (const int& value);

/// Recognize strings

AlgebExpr (const char* value);

AlgebExpr (const std::stringé& value);

/// Recognize shared constructs

AlgebExpr (const SharedExpré& value);

/// Recognize function return values

template < class T >

AlgebExpr (const result<T>& value);
}i
/// Logical Or Operator
const AlgebExpr operator|| (const AlgebExpr& lhs, const AlgebExpré& rhs);
/// Logical And Operator
const AlgebExpr operatoré&& (const AlgebExpr& lhs, const AlgebExpré& rhs);
/// Bitwise Or Operator
const AlgebExpr operator| (const AlgebExpré& lhs, const AlgebExpré& rhs);
/// Bitwise And Operator
const AlgebExpr operator& (const AlgebExpr& lhs, const AlgebExpré& rhs);
/// Xor Operator
const AlgebExpr operator” (const AlgebExpr& lhs, const AlgebExpré& rhs);
/// Less Than Operator
const AlgebExpr operator< (const AlgebExpr& lhs, const AlgebExpré& rhs);
/// Less than or Equal Operator
const AlgebExpr operator<= (const AlgebExpr& lhs, const AlgebExpré& rhs);
/// Greater Than Operator
const AlgebExpr operator> (const AlgebExpr& lhs, const AlgebExpré& rhs);
/// Greater than or Equal Operator
const AlgebExpr operator>= (const AlgebExpr& lhs, const AlgebExpré& rhs);
/// Right Shift Operator
const AlgebExpr operator>> (const AlgebExpr& lhs, const AlgebExpré& rhs);
/// Left Shift Operator
const AlgebExpr operator<< (const AlgebExpr& lhs, const AlgebExpré& rhs);
/// Multiply Operator
const AlgebExpr operator* (const AlgebExpr& lhs, const AlgebExpré& rhs);
/// Divide Operator
const AlgebExpr operator/ (const AlgebExpré& lhs, const AlgebExpr& rhs);
/// Modulus Operator
const AlgebExpr operator$ (const AlgebExpr& lhs, const AlgebExpré& rhs);

Copyright © 2021 Accellera. All rights reserved.
526

Portable Test and Stimulus Standard 2.0 — April 2021

/// Add Operator
const AlgebExpr operator+ (const AlgebExpr& lhs, const AlgebExpré& rhs);
/// Subtract Operator

const AlgebExpr operator- (const AlgebExpr& lhs, const AlgebExpré& rhs);
/// Equal Operator

const AlgebExpr operator== (const AlgebExpr& lhs, const AlgebExpré& rhs);
/// Not Equal Operator

const AlgebExpr operator!= (const AlgebExpr& lhs, const AlgebExpré& rhs);

/// Unary bang Operator
const AlgebExpr operator! (const AlgebExpr é&e);
/// Unary minus Operator
const AlgebExpr operator-(const AlgebExpr &e);
/// Unary tilde Operator
const AlgebExpr operator~ (const AlgebExpr &e);
/// Unary AND reduction operator
const AlgebExpr and reduce (const AlgebExpr &e);
/// Unary OR reduction operator
const AlgebExpr or reduce (const AlgebExpr &e);
/// Unary XOR reduction operator
const AlgebExpr xor reduce(const AlgebExpr é&e);
const AlgebExpr pow(const AlgebExpr& base, const AlgebExpr &exp);
}; // namespace detail
}; // namespace pss
#include "algebExpr.t"

C.54 File pss/detail/comp_ref.h

#pragma once
namespace pss {
namespace detail {
template <class T> class comp ref {
public:
T* operator -> ();
}i
}

C.55 File pss/detail/FunctionParam.h

#pragma once
namespace pss {
namespace detail {
class FunctionParam {
}i
}; // namespace detail
}; // namespace pss

C.56 File pss/detail/FunctionResult.h

#pragma once
namespace pss {
namespace detail {
class FunctionResult {
}i

Copyright © 2021 Accellera. All rights reserved.
527

Portable Test and Stimulus Standard 2.0 — April 2021

}; // namespace detail
}; // namespace pss

C.57 File pss/detail/Stmt.h

#pragma once
#include<vector>
#include "pss/action handle.h"
#include "pss/action attr.h"
#include "pss/constraint.h"
#include "algebExpr.h"
#include "sharedExpr.h"
namespace pss {
class bind;
namespace detail {
class Stmt
{
public:
/// Recognize action handle<>
template<class T>
Stmt (const action handle<T>& value);
/// Recognize action attr<>
template<class T>
Stmt (const action attr<T>& value);
/// Recognize dynamic constraint
Stmt (const dynamic constrainté& value);
/// Recognize constraint as an activity statement
Stmt (const constrainté& Db);
/// Recognize shared constructs
Stmt (const SharedExpré& other);
/// Recognize bind as an activity statement
Stmt (const bindé& b);
// Default Constructor
Stmt () ;
bi
}; // namespace detail
}; // namespace pss
#include "Stmt.t"

Copyright © 2021 Accellera. All rights reserved.
528

Portable Test and Stimulus Standard 2.0 — April 2021

Annex D
(normative)

Core library package

This annex contains the contents of the built-in core library packages executor pkg and
addr_reg_ pkg described in Clause 24. If there is a conflict between core library package contents shown
anywhere in this standard and the material in this annex, the material shown in this annex shall take
precedence.

D.1 Package executor_pkg

package executor pkg {
struct executor trait s {};
struct empty executor trait s : executor trait s {};
component executor base c {};
component executor c
<struct TRAIT : executor_trait_ s = empty executor_ trait_ s>
executor base c {
TRAIT trait;
i
component executor group c
<struct TRAIT : executor_trait_s = empty executor_ trait_ s> {
function void add executor (ref executor c<TRAIT> exe);
b
struct executor claim s
<struct TRAIT : executor trait s = empty executor trait s> {
rand TRAIT trait;
b

function ref executor base c executor();

D.2 Package addr_reg_pkg

package addr reg pkg {
import executor pkg::* ;

component addr space base c {};
struct addr trait s {};
struct empty addr trait s : addr trait s {};

typedef chandle addr handle t;

Copyright © 2021 Accellera. All rights reserved.
529

Portable Test and Stimulus Standard 2.0 — April 2021

component contiguous addr space c
<struct TRAIT : addr trait s = empty addr trait s>
addr space base c {

function addr handle t add region(addr region s <TRAIT> r);
function addr handle t add nonallocatable region(addr region s <> r);

bool byte addressable = true;
b

component transparent addr space c
<struct TRAIT: addr trait s = empty addr trait s>
contiguous_addr space c<TRAIT> {};

struct addr region base s {
bit[64] size;
i

struct addr region s <struct TRAIT : addr trait s = empty addr trait s>
addr_region base s {
TRAIT trait;
bi

struct transparent addr region s
<struct TRAIT : addr trait s = empty addr trait s>
addr region s<TRAIT> {
bit[64] addr;
i

struct addr claim base s {
rand bit[64] size;
rand bool permanent;
constraint default permanent == false;

b

struct addr claim s <struct TRAIT : addr trait s = empty addr trait s>
addr _claim base s {
rand TRAIT trait;
rand bit[64] in [64'd2**0, 64'd2**1, 64'd2**2, 64'd2**3 , 64'd2**4
64'd2**5 , 64'd2**6 , 64'd2**7 , 64'd2**8 , 64'd2**9 , 64'd2**10,
64'd2**11, 64'd2**12, 64'd2**13, 64'd2**14, 64'd2**15, 64'd2**1l6,
64'd2**17, 64'd2**18, 64'd2**19, 64'd2**20, 64'd2**21, 64'd2**22,
64'd2**23, 64'd2**24, 64'd2**25, 64'd2**26, 64'd2**27, 64'd2**28,
64'd2**29, 64'd2**30, 64'd2**31, 64'd2**32, 64'd2**33, 64'd2**34,
64'd2**35, 64'd2**36, 64'd2**37, 64'd2**38, 64'd2**39, 64'd2**40,
64'd2**41, 64'd2**42, 64'd2**43, 64'd2**44, 64'd2**45, 64'd2**46,
64'd2**47, 64'd2**48, 64'd2**49, 64'd2**50, 64'd2**51, 64'd2**52,
64'd2**53, 64'd2**54, 64'd2**55, 64'd2**56, 64'd2**57, 64'd2**58,
64'd2**59, 64'd2**60, 64'd2**61, 64'd2**62, 64'd2**63] alignment;
i

struct transparent addr claim s
<struct TRAIT : addr trait s = empty addr trait s>
addr claim s<TRAIT> {
rand bit[64] addr;
i

enum endianness e {LITTLE ENDIAN, BIG ENDIAN};

Copyright © 2021 Accellera. All rights reserved.
530

Portable Test and Stimulus Standard 2.0 — April 2021

struct packed s<endianness e e = LITTLE ENDIAN> {};

struct sizeof s<type T> {
static const int nbytes =
static const int nbits =

b

/* implementation-specific */;
/* implementation-specific */;

const addr_handle t nullhandle = /* implementation-specific */;
struct sized addr handle s < int SZ, // in bits
int 1sb = O,
endianness e e =
packed s<e> {

LITTLE ENDIAN >

addr handle t hndl;
}i
function addr handle t make handle from claim (addr claim base s claim,
bit[64] offset = 0);

function addr handle t make handle from handle (addr handle t handle,

bit[64] offset);
function bit[64] addr value(addr handle t hndl);
import target function addr value;
function bit([8] read8 (addr _handle t hndl);
function bit[16] readl6(addr handle t hndl);
function bit[32] read32(addr handle t hndl);
function bit[64] read64 (addr handle t hndl);
function void write8 (addr handle t hndl, bit[8] data);
function void writel6 (addr handle t hndl, bit[1l6] data);
function void write32(addr handle t hndl, bit[32] data);
function void write64 (addr handle t hndl, bit[64] data);
function void read bytes (addr handle t hndl, list<bit[8]> data,
int size);

function void write bytes(addr handle t hndl, list<bit[8]> data);
function void read struct (addr handle t hndl, struct packed struct);
function void write struct(addr handle t hndl, struct packed struct);
extend component executor base c {

function bit[8] read8 (addr _handle t hndl);

function bit[16] readl6(addr handle t hndl);

function bit[32] read32(addr_handle t hndl);

function bit[64] read64 (addr handle t hndl);

function void write8 (addr handle t hndl, bit[8] data);

function void writel6 (addr handle t hndl, bit[1l6] data);

function void write32(addr handle t hndl, bit([32] data);

function void write64 (addr handle t hndl, bit[64] data);

function void read bytes (addr handle t hndl, list<bit[8]> data,

int size);
function void write bytes(addr handle t hndl, list<bit[8]> data);

Copyright © 2021 Accellera. All rights reserved.

531

Portable Test and Stimulus Standard 2.0 — April 2021

enum reg access {READWRITE, READONLY, WRITEONLY};

pure component reg c < type R,
reg access ACC = READWRITE,
int SZ = (8*sizeof s<R>::nbytes)> ({
function R read():;
import target function read;

function void write (R r);
import target function write;

function bit[SZ] read val();
import target function read val;

function void write val(bit[SZ] r);
import target function write val;

b

struct node s {
string name;
int index;

b

pure component reg group c {
pure function bit[64] get offset of instance(string name);
pure function bit[64] get offset of instance array(string name,
int index);
pure function bit[64] get offset of path(list<node s> path);

function void set handle(addr handle t addr);
import solve function set handle;

b

Copyright © 2021 Accellera. All rights reserved.
532

Portable Test and Stimulus Standard 2.0 — April 2021

Annex E
(normative)

Foreign language bindings

E.1 Function prototype mapping

Let f'be a function declared under hierarchical path A in PSS with type signature as below (with D, as the
direction, T, as the type and p, as the parameter name):

JDogTopo D1 Trpy, - Dy T, py);

When f'is bound to a foreign language API (see 22.4), it is mapped to the following function in the target
language:

H:f(T'opo T'1pp - T'ypp)s

If the foreign language supports parameter directions, their directions are the same as in PSS.

NOTE—See E.5 for exceptions when mapping PSS functions to SystemVerilog tasks.

Each parameter in the PSS function is mapped to a corresponding parameter in the mapped function. The
details of function name and data type binding are covered further below.

E.2 Data type mapping

PSS specifies data type bindings to C/C++ and SystemVerilog. The data type binding rules apply only to
parameter and return types referenced (directly or indirectly) in the declaration of functions in PSS that are
bound to foreign language APIs (see 22.4). The allowed types are specified in 22.4.1.1, namely:

— Primitive types: bit or int (width no more than 64 bits), bool, string, chandle.

— User-defined types: enum and struct, excluding packed structs (see 24.3.1) and excluding flow/
resource objects. Fields of structs shall be of these allowed types (recursively).

— Fixed-size arrays of these types.

The type binding is specified for parameter and return types.

E.3 C language bindings

E.3.1 Function names

PSS implementations shall support mapping a PSS function name to an identical function name in C,
ignoring the hierarchical path in PSS. PSS implementations may define additional mapping schemes for
function names.

Copyright © 2021 Accellera. All rights reserved.
533

E.3.2 Primitive types

Portable Test and Stimulus Standard 2.0 — April 2021

The mapping between the PSS primitive types and C types is specified in Table E.1.

Table E.1—Mapping PSS primitive types and C types

PSS type C input type C output/inout type C return type
string const char * char ** char *
bool unsigned int unsigned int * unsigned int
chandle const void * void ** void *

bit (1-8-bit domain)

unsigned char

unsigned char *

unsigned char

bit (9-16-bit domain)

unsigned short

unsigned short *

unsigned short

bit (17-32-bit domain)

unsigned int

unsigned int *

unsigned int

bit (33-64-bit domain)

unsigned long long

unsigned long long *

unsigned long long

int (1-8-bit domain) char char * char

int (9-16-bit domain) short short * short

int (17-32-bit domain) int int * int

int (33-64-bit domain) long long long long * long long

Where pointers are used, the callee shall not allocate or de-allocate the memory region referenced by the
pointer. Further, for non-void pointers, the callee shall assume that the memory location is valid only for the
duration of the function execution, and shall not retain a reference to the parameter after the function call
returns. For strings and chandles, in the case of inout/output directions, the callee may return a pointer to
storage it owns.

E.3.3 Arrays

Fixed-sized arrays are mapped to fixed-size arrays in C for function arguments. Mapping PSS fixed-sized
arrays to C is not supported for function return types.

E.3.4 Structs
E.3.4.1 Name mapping

The mapping between a PSS struct type (Tpgg) defined in a hierarchical path /7 and a C type (7) is shown
in Table E.2.

Table E.2—Mapping PSS struct types and C types

PSS type C input type C output/inout type C return type

H.'.‘TPSS const Tc* Tc* TC

Copyright © 2021 Accellera. All rights reserved.
534

Portable Test and Stimulus Standard 2.0 — April 2021

In the general case, the name of the type in C (T), is derived from the PSS type name (Tpgg) and its
hierarchical path (H). A PSS implementation shall support the name mapping scheme where the name of the
C type is identical to the PSS type (ignoring the hierarchical path), i.e., Tc == Tpgg. A PSS implementation
may support additional name mapping schemes.

E.3.4.2 Field mapping
Each PSS struct field is mapped to a corresponding field in C of the corresponding type and name in the
same order. If the field type is itself a user-defined type (e.g., struct or enum), the mapping of the field

entails the corresponding mapping of the type (recursively). For primitive types, the field is mapped as
shown in Table E.3.

Table E.3—Mapping PSS struct field primitive types and C types

PSS field type C field type
string char *
bool unsigned int
chandle void *

bit (1-8-bit domain)

unsigned char

bit (9-16-bit domain)

unsigned short

bit (17-32-bit domain) unsigned int

bit (33-64-bit domain) unsigned long long

int (1-8-bit domain) char

int (9-16-bit domain) short

int (17-32-bit domain) int

int (33-64-bit domain) long long

Since the C language does not support type inheritance, if the PSS struct Tpgg derives from a PSS base type,
then the fields of that base type are mapped directly into the mapped type T~. The code listing below shows
an example of struct type mapping in C.

Copyright © 2021 Accellera. All rights reserved.
535

Portable Test and Stimulus Standard 2.0 — April 2021

// PSS code

struct base s {
string £0;
i

struct sub_ s {
int in [0..99] f1 = 2;
string £2;

b

struct my struct s
sub_s £3;
bit[l6] £f4;

bi

: base s {

my struct s function foo
(input my struct s x,
output my struct s y);

// C code

struct sub s {
char f1;
char *f£2;

b

struct my struct s {
char *f£O0;
sub_s f£3;
unsigned short f4;
bi

my struct s foo
(const my struct s *x,
my struct s *y);

Example E.1T—DSL struct mapping into C

Only the field name, its type and the position of the field inside a struct is relevant for mapping to the C
type. Other field properties (such as initial value) and struct properties (such as constraints) are ignored.

E.3.4.3 Other mapping aspects

Tools may automatically generate C definitions for the required types, given PSS source code. Or, tools may
utilize existing C declarations of the types. Regardless of whether these definitions are automatically
generated or obtained in another way, PSS test generation tools may assume that these definitions are

operative in the compilation of the C user implementation of the imported functions.

Note that the C declaration of a struct data type may have additional fields that are not reflected in the PSS
type declaration. A PSS implementation may not assume that the C struct is size-compatible to the PSS

struct type.

E.3.5 Enumeration types

A PSS enumeration type E is mapped to C as a plain numeric type N as follows:

Table E.4—Mapping PSS enum types and C types

PSS type C input type

C output/inout type C return type

E N

N* N

where N is:

a) one of: char, short, int, or long long

b) the smallest type that includes the values of all the enum items in its domain

Copyright © 2021 Accellera. All rights reserved.

536

Portable Test and Stimulus Standard 2.0 — April 2021

A PSS implementation will pass the value of the enumeration as an argument in the generated call to the
function. These values can be either explicitly user-defined or assigned by a PSS implementation.

E.4 C++ language bindings

C++ is seen by the PSS standard as a primary language in the PSS domain. The PSS standard covers the
projection of PSS arrays, enumeration types, strings, and struct types to their native C++ counterparts and
requires that the naming of entities is kept identical between the two languages. This provides a consistent
logical view of the data model across PSS and C++ code. The PSS language can be used in conjunction with
C++ code without tool-specific dependencies.

Tools may automatically generate C++ definitions for the required types, given PSS source code. However,
regardless of whether these definitions are automatically generated or obtained in another way, PSS test
generation tools may assume these exact definitions are operative in the compilation of the C++ user
implementation of the imported functions. In other words, the C++ functions are called by the PSS tool
during test generation, with the actual parameter values in the C++ memory layout of the corresponding data
types. Since actual binary layout is compiler dependent, PSS tool flows may involve compilation of some
C++ glue code in the context of the user environment.

E.4.1 Function name mapping and namespaces

Generally, PSS user-defined types correspond to C++ types with identical names. In PSS, packages and
components constitute namespaces for types declared in their scopes. The C++ type definition
corresponding to a PSS type declared in a package or component scope shall be inside the namespace
statement scope having the same name as the PSS component/package. Consequently, both the unqualified
and qualified names of the C++ mapped type are the same as in PSS.

PSS implementations shall support mapping a PSS function name to an identical function name in C++, in
the same namespace hierarchical path. PSS implementations may define additional mapping schemes for
function names.

E.4.2 Primitive types

a) C++ type mapping for primitive numeric types is the same as that for C.

b) A PSS bool is a C++ bool and the values: false, true are mapped respectively from PSS to
their C++ equivalents.

¢) C++ mapping of a PSS string is std: : string (typedef-ed by the Standard Template Library
(STL) to std: :basic_string<char> with default template parameters).

Copyright © 2021 Accellera. All rights reserved.
537

Table E.5 provides the mapping between PSS primitive types and C++ types. Note that string is passed as a

Portable Test and Stimulus Standard 2.0 — April 2021

reference.
Table E.5—Mapping PSS primitive types and C++ types
PSS type C++ input type C++ output/inout type C++ return type
string const std::string & std::string & std::string
bool bool bool * bool
chandle const void * void ** void *

bit (1-8-bit domain)

unsigned char

unsigned char *

unsigned char

bit (9-16-bit domain)

unsigned short

unsigned short *

unsigned short

bit (17-32-bit domain)

unsigned int

unsigned int *

unsigned int

bit (33-64-bit domain)

unsigned long long

unsigned long long *

unsigned long long

int (1-8-bit domain) char char * char

int (9-16-bit domain) short short * short

int (17-32-bit domain) int int * int

int (33-64-bit domain) long long long long * long long

E.4.3 Arrays

The C++ mapping of a PSS array is std: : vector of the C++ mapping of the respective element type
(using the default allocator class). Fixed-sized arrays in PSS are mapped to the corresponding STL vector
class, just like arrays of an unspecified size. However, if modified, they are resized to the original size upon
return, filling the default values of the respective element type as needed.

E.4.4 Structs
E.4.4.1 Name mapping

The mapping between a PSS struct type (Tpgg) and a C++ type (T¢pp) is shown in Table E.6.

Table E.6—Mapping PSS struct types and C++ types

PSS type C++_input type C++ output/inout type C++ return type

Tpgg const Tcpp & Tepp& Tcpp

PSS struct types are mapped to C++ structs, along with their field structure and inherited base type, if
specified.

The base type declaration of the struct, if any, is mapped to the (public) base struct type declaration in C++
and entails the mapping of its base type (recursively).

Copyright © 2021 Accellera. All rights reserved.
538

Portable Test and Stimulus Standard 2.0 — April 2021

E.4.4.2 Field mapping

Each PSS field is mapped to a corresponding (public, non-static) field in C++ of the corresponding type and
in the same order. If the field type is itself a user-defined type (struct or enum), the mapping of the field
entails the corresponding mapping of the type (recursively).

For example, given the following imported function definitions:

function void foo(derived s d);
import solve CPP function foo;

with the corresponding PSS definitions:

struct base s {
int in [0..99] f1;
i
struct sub s {
string £2;
i
struct derived s : base s {
sub s £3;
bit[15:0] f4[4];
i

mapping type derived s to C++ involves the following definitions:

struct base s {
int f1;
i
struct sub s {
std::string £f2;
b
struct derived s : base s {
sub s £3;
std::vector<unsigned short> f4;
b

Nested structs in PSS are instantiated directly under the containing struct, that is, they have value
semantics. Mapped struct types have no member functions and, in particular, are confined to the default
constructor and implicit copy constructor.

Mapping a struct type does not entail the mapping of any of its subtypes. However, struct instances are
passed according to the type of the actual parameter expression used in an import function call. Therefore,
the ultimate set of C++ mapped types for a given PSS model depends on its function calls, not just the
function prototypes.

E.4.4.3 Other mapping aspects
In the case of output and inout composite parameters, if a different memory representation is used for

the PSS tool vs. C++, the inner state shall be copied in upon calling it and any change shall be copied back
out onto the PSS entity upon return.

Copyright © 2021 Accellera. All rights reserved.
539

Portable Test and Stimulus Standard 2.0 — April 2021

E.4.5 Enumeration types
PSS enumeration types are mapped to C++ unscoped enumeration types (as opposed to enum classes), with
the same set of enum items in the same order and identical names. When specified, explicit numeric constant

values for an enum item correspond to the same value in the C++ definition.

For example, the PSS definition:

enum color e {red = 0x10, green = 0x20, blue = 0x30};
is mapped to the C++ type as defined by this very same code.

Consequently, enum item names within types used in PSS-to-C++ type binding must be unique.

E.5 SystemVerilog language bindings

E.5.1 Function names
PSS implementations shall support mapping a PSS function name to an identical function or task name in

SystemVerilog, ignoring the hierarchical path in PSS. PSS implementations may define additional mapping
schemes for function names.

E.5.2 Primitive types

The mapping between the PSS primitive types and SystemVerilog types for both parameter and return types
is specified in Table E.7.

Table E.7—Mapping PSS primitive types and SystemVerilog types

PSS type SystemVerilog type
string string
bool bit
chandle chandle

bit (1-8-bit domain)

byte unsigned

bit (9-16-bit domain)

shortint unsigned

bit (17-32-bit domain)

int unsigned

bit (33-64-bit domain)

longint unsigned

int (1-8-bit domain) byte

int (9-16-bit domain) shortint
int (17-32-bit domain) int

int (33-64-bit domain) longint

Copyright © 2021 Accellera. All rights reserved.

540

Portable Test and Stimulus Standard 2.0 — April 2021

PSS functions designated with the target qualifier (see 22.4.1) may be mapped either to tasks or functions in
SystemVerilog, and shall be mapped to tasks by default. PSS solve functions shall be mapped to
SystemVerilog functions. If neither platform qualifier is used, the default mapping shall be to a function.
PSS functions that are mapped to SystemVerilog tasks may not be called on the solve platform.

When a PSS function is mapped to a SystemVerilog function, the return type (if any) and arguments of the
SystemVerilog function shall correspond to those of the PSS function prototype.

When a PSS function is mapped to a SystemVerilog task, the following apply:

a) Ifthe PSS function is a void function, then all arguments of the SystemVerilog task shall correspond
to the PSS prototype:

JDoTopo D Tipp - Dy Typy); => Do Tgpo D1 T'1pps -+ Dy Ty py)s

b) Ifthe PSS function returns a value, then the first argument of the SystemVerilog task shall be an out-
put of the type corresponding to the return value. All other arguments shall correspond accordingly:

T./(DyTopo D; Ty py, - - ., D, Ty, py); => toutput T',.p,, Dy T'gpo. D1 T'1 py, - -, Dy Ty py);

E.5.3 Numeric value mapping

When a numeric type or value is passed from PSS to SystemVerilog, the value shall be expanded or
truncated according to SystemVerilog rules (IEEE 1800-2017, section 10.7), treating the SystemVerilog
type as the left-hand side of an assignment statement where the PSS value is the right-hand side.

When a numeric type of value is passed from SystemVerilog to PSS, the value shall be expanded or
truncated according to the rules in 9.7 and 9.8, treating the SystemVerilog type as the right-hand side of an
assignment statement where the PSS value is the left-hand side.

E.5.4 Arrays

Fixed-size arrays in PSS are mapped to SystemVerilog dynamic arrays of corresponding type. Arrays are
passed by value between PSS and SystemVerilog.

E.5.5 Structs

PSS struct types are mapped to classes in SystemVerilog with fields whose types correspond and whose
names match. Values of all fields are deep-copied between mapped elements.

The following also apply:

a) The target SystemVerilog class must contain all fields present in the PSS struct. The target System-
Verilog class may be derived from a base class type.

b) Inheritance relationships may or may not be the same across the boundary. Whether the PSS struct
is derived from a base type has no bearing on whether the SystemVerilog class to which it is mapped
is derived from a similar (or any) type.

¢) Passing inheritance hierarchies with shadowed fields is not supported.

d) Tools shall ignore the containing namespace of mapped structs.

Copyright © 2021 Accellera. All rights reserved.
541

Portable Test and Stimulus Standard 2.0 — April 2021

E.5.6 Enumeration types

A PSS enumeration type is mapped to a SystemVerilog enum type. The numeric values of the enum_items
must match, but it is not required that the names of the enum_items match.

If a PSS enumeration type is passed to or from SystemVerilog, the enum value is passed as its numeric
equivalent, according to E.5.3.

Copyright © 2021 Accellera. All rights reserved.
542

Portable Test and Stimulus Standard 2.0 — April 2021

Annex F
(informative)

Solution space

Once a PSS model has been specified, the elements of the model must be processed in some way to ensure
that resulting scenarios accurately reflect the specified behaviors. This annex describes the steps a
processing tool may take to analyze a portable stimulus description and create a (set of) scenario(s). See also
Clause 18.

a) Identify root action:
1) Specified by the user.

2) Unless otherwise specified, the designated root action shall be located in the root component.
By default, the root component shall be pss_top.

3) Ifthe specified root action is an atomic action, consider it to be the initial action traversed in an
implicit activity statement.

4) If the specified root action is a compound action:

i) Identify all bind statements in the activity and bind the associated object(s) accordingly.
Identify all resulting scheduling dependencies between bound actions.

i) For every compound action traversed in the activity, expand its activity to include each
sub-action traversal in the overall activity to be analyzed.

ii) Identify scheduling dependencies among all action traversals declared in the activity and
add to the scheduling dependency list identified in a.4.i.

b) For each action traversed in the activity:
1) For each resource locked or shared (i.e., claimed) by the action:

i) Identify the resource pool of the appropriate type to which the resource reference may be
bound.

ii) Identify all other action(s) claiming a resource of the same type that is bound to the same
pool.

iii) Each resource object instance in the resource pool has an built-in instance_id field
that is unique for that pool.

iv) The algebraic constraints for evaluating field(s) of the resource object are the union of the
constraints defined in the resource object type and the constraints in all actions ultimately
connected to the resource object.

v) Identify scheduling dependencies enforced by the claimed resource and add these to the
set of dependencies identified in a.4.i.

1. If an action locks a resource instance, no other action claiming that same resource
instance may be scheduled concurrent with the locking action.

2. If actions scheduled concurrently collectively attempt to lock more resource instances
than are available in the pool, an error shall be generated.

3. If the resource instance is not locked, there are no scheduling implications of sharing a
resource instance.

2) For each flow object declared in the action that is not already bound:

i) Ifthe flow object is not explicitly bound to a corresponding flow object, identify the object
pool(s) of the appropriate type to which the flow object may be bound.

Copyright © 2021 Accellera. All rights reserved.
543

c)

iii)

iv)

v)

Vi)

vii)

Portable Test and Stimulus Standard 2.0 — April 2021

The algebraic constraints for evaluating field(s) of the flow object are the union of the
constraints defined in flow object type and the constraints in all actions ultimately con-
nected to the flow object.

Identify all other explicitly-traversed actions bound to the same pool that:
1. Declare a matching object type with consistent data constraints,
2. Meet the scheduling constraints from b.1.v, and

3. Are scheduled consistent with the scheduling constraints implied by the type of the flow
object.

The set of explicitly-traversed actions from b.2.iii shall compose the inferencing candi-
date list (ICL).

If no explicitly traversed action appears in the ICL, then an anonymous instance of each
action type bound to the pool from b.2.i shall be added to the ICL.

If the ICL is empty, an error shall be generated.

For each element in the ICL, perform step b.2 until no actions in the ICL have any
unbound flow object references or the tool’s inferencing limit is reached (see c).

If the tool reaches the maximum inferencing depth, it shall infer a terminating action if one is avail-
able. Given the set of actions, flow and resource objects, scheduling and data constraints, and associ-
ated ICLs, pick an instance from the ICL and a value for each data field in the flow object that
satisfies the constraints and bind the flow object reference from the action to the corresponding
instance from the ICL.

Copyright © 2021 Accellera. All rights reserved.
544

	Portable Test and Stimulus Standard Version 2.0 April 2021
	Contents
	List of figures
	List of tables
	List of syntax excerpts
	List of examples
	1. Overview
	1.1 Purpose
	1.2 Language design considerations
	1.3 Modeling basics
	1.4 Test realization
	1.5 Conventions used
	1.5.1 Visual cues (meta-syntax)
	1.5.2 Notational conventions
	1.5.3 Examples

	1.6 Use of color in this standard
	1.7 Contents of this standard

	2. References
	3. Definitions, acronyms, and abbreviations
	3.1 Definitions
	3.2 Acronyms and abbreviations

	4. Lexical conventions
	4.1 Comments
	4.2 Identifiers
	4.3 Escaped identifiers
	4.4 Keywords
	4.5 Operators
	4.6 Numbers
	4.6.1 Using integer literals in expressions

	4.7 String literals
	4.7.1 Examples

	4.8 Aggregate literals
	4.8.1 Empty aggregate literal
	4.8.2 Value list literals
	4.8.3 Map literals
	4.8.4 Structure literals
	4.8.5 Nesting aggregate literals

	5. Modeling concepts
	5.1 Modeling data flow
	5.1.1 Buffers
	5.1.2 Streams
	5.1.3 States
	5.1.4 Data flow object pools

	5.2 Modeling system resources
	5.2.1 Resource objects
	5.2.2 Resource pools
	5.2.2.1 Locking resources
	5.2.2.2 Sharing resources

	5.3 Basic building blocks
	5.3.1 Components and binding
	5.3.2 Evaluation and inference

	5.4 Constraints and inferencing
	5.5 Summary

	6. Execution semantic concepts
	6.1 Overview
	6.2 Assumptions of abstract scheduling
	6.2.1 Starting and ending action executions
	6.2.2 Concurrency
	6.2.3 Synchronized invocation

	6.3 Scheduling concepts
	6.3.1 Preliminary definitions
	6.3.2 Sequential scheduling
	6.3.3 Parallel scheduling
	6.3.4 Concurrent scheduling

	7. C++ specifics
	7.1 General
	7.2 PSS/DSL features not supported in PSS/C++

	8. Data types
	8.1 General
	8.1.1 DSL syntax

	8.2 Numeric types
	8.2.1 DSL syntax
	8.2.2 C++ syntax
	8.2.3 Examples

	8.3 Booleans
	8.4 Enumeration types
	8.4.1 DSL syntax
	8.4.2 C++ syntax
	8.4.3 Examples

	8.5 Strings
	8.5.1 DSL syntax
	8.5.2 C++ syntax
	8.5.3 Examples

	8.6 Chandles
	8.6.1 DSL syntax
	8.6.2 C++ syntax
	8.6.3 Example

	8.7 Structs
	8.7.1 DSL syntax
	8.7.2 C++ syntax
	8.7.3 Examples

	8.8 Collections
	8.8.1 DSL syntax
	8.8.2 Arrays
	8.8.2.1 Array operators
	8.8.2.2 Array methods
	8.8.2.3 C++ syntax
	8.8.2.4 Examples
	8.8.2.5 Array properties

	8.8.3 Lists
	8.8.3.1 List operators
	8.8.3.2 List methods
	8.8.3.3 Examples

	8.8.4 Maps
	8.8.4.1 Map operators
	8.8.4.2 Map methods
	8.8.4.3 Example

	8.8.5 Sets
	8.8.5.1 Set operators
	8.8.5.2 Set methods
	8.8.5.3 Examples

	8.9 Reference types
	8.9.1 DSL syntax
	8.9.2 Examples

	8.10 User-defined data types
	8.10.1 DSL syntax
	8.10.2 C++ syntax
	8.10.3 Examples

	8.11 Data type conversion
	8.11.1 DSL syntax
	8.11.2 Examples

	9. Operators and expressions
	9.1 DSL syntax
	9.2 Constant expressions
	9.3 Assignment operators
	9.4 Expression operators
	9.4.1 Operator precedence and associativity
	9.4.2 Using aggregate literals in expressions
	9.4.3 Type inference rules
	9.4.4 Operator expression short-circuiting

	9.5 Operator descriptions
	9.5.1 Arithmetic operators
	9.5.1.1 Arithmetic expressions with unsigned and signed types

	9.5.2 Relational operators
	9.5.3 Equality operators
	9.5.4 Logical operators
	9.5.5 Bitwise operators
	9.5.6 Reduction operators
	9.5.7 Shift operators
	9.5.8 Conditional operator
	9.5.9 Set membership operator
	9.5.9.1 DSL syntax
	9.5.9.2 C++ syntax
	9.5.9.3 Examples

	9.6 Primary expressions
	9.6.1 Bit-selects and part-selects
	9.6.2 Selecting an element from a collection (indexing)

	9.7 Bit sizes for numeric expressions
	9.7.1 Rules for expression bit sizes

	9.8 Evaluation rules for numeric expressions
	9.8.1 Rules for expression signedness
	9.8.2 Steps for evaluating a numeric expression
	9.8.3 Steps for evaluating an assignment

	10. Components
	10.1 DSL syntax
	10.2 C++ syntax
	10.3 Examples
	10.4 Components as namespaces
	10.5 Component instantiation
	10.5.1 Semantics
	10.5.2 Examples

	10.6 Component references
	10.6.1 Semantics
	10.6.2 Examples

	10.7 Pure components

	11. Actions
	11.1 DSL syntax
	11.2 C++ syntax
	11.3 Examples
	11.3.1 Atomic actions
	11.3.2 Compound actions
	11.3.3 Abstract actions

	12. Template types
	12.1 General
	12.2 Template type declarations
	12.2.1 DSL syntax
	12.2.2 Examples

	12.3 Template parameter declarations
	12.3.1 Template value parameter declarations
	12.3.1.1 DSL syntax
	12.3.1.2 Examples

	12.3.2 Template type parameter declarations
	12.3.2.1 DSL syntax
	12.3.2.2 Examples

	12.4 Template type instantiation
	12.4.1 DSL syntax
	12.4.2 Examples

	12.5 Template type user restrictions

	13. Activities
	13.1 Activity declarations
	13.2 Activity constructs
	13.2.1 DSL syntax
	13.2.2 C++ syntax

	13.3 Action scheduling statements
	13.3.1 Action traversal statement
	13.3.1.1 DSL syntax
	13.3.1.2 C++ syntax
	13.3.1.3 Examples

	13.3.2 Action handle array traversal
	13.3.3 Sequential block
	13.3.3.1 DSL syntax
	13.3.3.2 C++ syntax
	13.3.3.3 Examples

	13.3.4 parallel
	13.3.4.1 DSL syntax
	13.3.4.2 C++ syntax
	13.3.4.3 Examples

	13.3.5 schedule
	13.3.5.1 DSL syntax
	13.3.5.2 C++ syntax
	13.3.5.3 Examples

	13.3.6 Fine-grained scheduling specifiers
	13.3.6.1 DSL syntax
	13.3.6.2 Examples

	13.4 Activity control flow constructs
	13.4.1 repeat (count)
	13.4.1.1 DSL syntax
	13.4.1.2 C++ syntax
	13.4.1.3 Examples

	13.4.2 repeat-while
	13.4.2.1 DSL syntax
	13.4.2.2 C++ syntax
	13.4.2.3 Examples

	13.4.3 foreach
	13.4.3.1 DSL syntax
	13.4.3.2 C++ syntax
	13.4.3.3 Examples

	13.4.4 select
	13.4.4.1 DSL syntax
	13.4.4.2 C++ syntax
	13.4.4.3 Examples

	13.4.5 if-else
	13.4.5.1 DSL syntax
	13.4.5.2 C++ syntax
	13.4.5.3 Examples

	13.4.6 match
	13.4.6.1 DSL syntax
	13.4.6.2 C++ syntax
	13.4.6.3 Examples

	13.5 Activity construction statements
	13.5.1 replicate
	13.5.1.1 DSL syntax
	13.5.1.2 C++ syntax
	13.5.1.3 Examples

	13.6 Activity evaluation with extension and inheritance
	13.7 Symbols
	13.7.1 DSL syntax
	13.7.2 C++ syntax
	13.7.3 Examples

	13.8 Named sub-activities
	13.8.1 DSL syntax
	13.8.2 Scoping rules for named sub-activities
	13.8.3 Hierarchical references using named sub-activity

	13.9 Explicitly binding flow objects
	13.9.1 DSL syntax
	13.9.2 C++ syntax
	13.9.3 Examples

	13.10 Hierarchical flow object binding
	13.11 Hierarchical resource object binding

	14. Flow objects
	14.1 Buffer objects
	14.1.1 DSL syntax
	14.1.2 C++ syntax
	14.1.3 Examples

	14.2 Stream objects
	14.2.1 DSL syntax
	14.2.2 C++ syntax
	14.2.3 Examples

	14.3 State objects
	14.3.1 DSL syntax
	14.3.2 C++ syntax
	14.3.3 Examples

	14.4 Using flow objects
	14.4.1 DSL syntax
	14.4.2 C++ syntax
	14.4.3 Examples

	15. Resource objects
	15.1 Declaring resource objects
	15.1.1 DSL syntax
	15.1.2 C++ syntax
	15.1.3 Examples

	15.2 Claiming resource objects
	15.2.1 DSL syntax
	15.2.2 C++ syntax
	15.2.3 Examples

	16. Pools
	16.1 DSL syntax
	16.2 C++ syntax
	16.3 Examples
	16.4 Static pool binding directive
	16.4.1 DSL syntax
	16.4.2 C++ syntax
	16.4.3 Examples

	16.5 Resource pools and the instance_id attribute
	16.6 Pool of states and the initial attribute

	17. Randomization specification constructs
	17.1 Algebraic constraints
	17.1.1 Member constraints
	17.1.1.1 DSL syntax
	17.1.1.2 C++ syntax
	17.1.1.3 Examples

	17.1.2 Constraint inheritance
	17.1.3 Action traversal in-line constraints
	17.1.4 Logical expression constraints
	17.1.4.1 DSL syntax
	17.1.4.2 C++ syntax

	17.1.5 Implication constraints
	17.1.5.1 DSL syntax
	17.1.5.2 C++ syntax
	17.1.5.3 Examples

	17.1.6 if-else constraints
	17.1.6.1 DSL syntax
	17.1.6.2 C++ syntax
	17.1.6.3 Examples

	17.1.7 foreach constraints
	17.1.7.1 DSL syntax
	17.1.7.2 C++ syntax
	17.1.7.3 Examples

	17.1.8 forall constraints
	17.1.8.1 DSL syntax
	17.1.8.2 C++ syntax
	17.1.8.3 Examples

	17.1.9 Unique constraints
	17.1.9.1 DSL syntax
	17.1.9.2 C++ syntax
	17.1.9.3 Examples

	17.1.10 Default value constraints
	17.1.10.1 DSL syntax
	17.1.10.2 C++ syntax
	17.1.10.3 Examples

	17.2 Scheduling constraints
	17.2.1 DSL syntax
	17.2.2 Example

	17.3 Sequencing constraints on state objects
	17.4 Randomization process
	17.4.1 Random attribute fields
	17.4.1.1 Semantics
	17.4.1.2 Examples

	17.4.2 Randomization of flow objects
	17.4.3 Randomization of resource objects
	17.4.4 Randomization of component assignment
	17.4.5 Random value selection order
	17.4.6 Evaluation of expressions with action handles
	17.4.7 Relationship lookahead
	17.4.7.1 Example 1
	17.4.7.2 Example 2

	17.4.8 Lookahead and sub-actions
	17.4.9 Lookahead and dynamic constraints
	17.4.10 pre_solve and post_solve exec blocks
	17.4.10.1 Example 1
	17.4.10.2 Example 2

	17.4.11 Body blocks and sampling external data

	18. Action inferencing
	18.1 Implicit binding and action inferences
	18.2 Object pools and action inferences
	18.3 Data constraints and action inferences

	19. Coverage specification constructs
	19.1 Defining the coverage model: covergroup
	19.1.1 DSL syntax
	19.1.2 C++ syntax
	19.1.3 Examples

	19.2 covergroup instantiation
	19.2.1 DSL syntax
	19.2.2 C++ syntax
	19.2.3 Examples

	19.3 Defining coverage points
	19.3.1 DSL syntax
	19.3.2 C++ syntax
	19.3.3 Examples
	19.3.4 Specifying bins
	19.3.4.1 DSL syntax
	19.3.4.2 C++ syntax
	19.3.4.3 Examples

	19.3.5 Coverpoint bin with covergroup expressions
	19.3.6 Automatic bin creation for coverage points
	19.3.7 Excluding coverage point values
	19.3.8 Specifying illegal coverage point values
	19.3.9 Value resolution

	19.4 Defining cross coverage
	19.4.1 DSL syntax
	19.4.2 C++ syntax
	19.4.3 Examples

	19.5 Defining cross bins
	19.6 Specifying coverage options
	19.6.1 C++ syntax
	19.6.2 Examples

	19.7 covergroup sampling
	19.8 Per-type and per-instance coverage collection
	19.8.1 Per-instance coverage of flow and resource objects
	19.8.2 Per-instance coverage in actions

	20. Type inheritance, extension, and overrides
	20.1 Type inheritance
	20.2 Type extension
	20.2.1 DSL syntax
	20.2.2 C++ syntax
	20.2.3 Examples
	20.2.4 Composite type extensions
	20.2.5 Enumeration type extensions
	20.2.6 Ordering of type extensions
	20.2.7 Template type extensions
	20.2.7.1 Examples

	20.3 Combining inheritance and extension
	20.4 Access protection
	20.5 Overriding types
	20.5.1 DSL syntax
	20.5.2 C++ syntax
	20.5.3 Examples

	21. Source organization and processing
	21.1 Packages
	21.1.1 Package declarations
	21.1.1.1 DSL syntax
	21.1.1.2 C++ Syntax
	21.1.1.3 Examples

	21.1.2 Nested packages
	21.1.3 Referencing package members
	21.1.3.1 DSL syntax

	21.1.4 Package aliases

	21.2 Declaration and reference ordering
	21.2.1 Examples

	21.3 Name resolution
	21.3.1 Name resolution examples

	22. Test realization
	22.1 exec blocks
	22.1.1 DSL syntax
	22.1.2 C++ syntax
	22.1.3 exec block kinds
	22.1.4 Examples
	22.1.5 exec block evaluation with inheritance and extension
	22.1.5.1 Inheritance and shadowing
	22.1.5.2 Using super
	22.1.5.3 Type extension

	22.2 Functions
	22.2.1 Function declarations
	22.2.1.1 DSL syntax
	22.2.1.2 C++ syntax
	22.2.1.3 Examples

	22.2.2 Parameters and return types
	22.2.3 Default parameter values
	22.2.4 Generic and varargs parameters
	22.2.5 Pure functions
	22.2.5.1 Examples

	22.2.6 Calling functions

	22.3 Native PSS functions
	22.3.1 DSL syntax
	22.3.2 C++ syntax
	22.3.3 Parameter passing semantics

	22.4 Foreign procedural interface
	22.4.1 Definition using imported functions
	22.4.1.1 DSL syntax
	22.4.1.2 C++ syntax
	22.4.1.3 Specifying function availability
	22.4.1.4 Specifying an implementation language

	22.4.2 Imported classes
	22.4.2.1 DSL syntax
	22.4.2.2 C++ syntax
	22.4.2.3 Examples

	22.5 Target-template implementation of exec blocks
	22.5.1 Target language
	22.5.2 exec file
	22.5.3 Referencing PSS fields in target-template exec blocks
	22.5.3.1 Examples
	22.5.3.2 Formatting

	22.6 Target-template implementation for functions
	22.6.1 DSL syntax
	22.6.2 C++ syntax
	22.6.3 Examples

	22.7 Procedural constructs
	22.7.1 Scoped blocks
	22.7.1.1 DSL syntax
	22.7.1.2 C++ syntax

	22.7.2 Variable declarations
	22.7.2.1 DSL syntax
	22.7.2.2 C++ syntax

	22.7.3 Assignments
	22.7.3.1 DSL syntax

	22.7.4 Void function calls
	22.7.4.1 DSL syntax

	22.7.5 return statement
	22.7.5.1 DSL syntax
	22.7.5.2 C++ syntax
	22.7.5.3 Examples

	22.7.6 repeat (count) statement
	22.7.6.1 DSL syntax
	22.7.6.2 C++ syntax
	22.7.6.3 Examples

	22.7.7 repeat-while statement
	22.7.7.1 DSL syntax
	22.7.7.2 C++ syntax
	22.7.7.3 Examples

	22.7.8 foreach statement
	22.7.8.1 DSL syntax
	22.7.8.2 C++ syntax

	22.7.9 if-else statement
	22.7.9.1 DSL syntax
	22.7.9.2 C++ syntax
	22.7.9.3 Examples

	22.7.10 match statement
	22.7.10.1 DSL syntax
	22.7.10.2 C++ syntax
	22.7.10.3 Examples

	22.7.11 break/continue statement
	22.7.11.1 DSL syntax
	22.7.11.2 C++ syntax
	22.7.11.3 Examples

	22.7.12 exec block

	22.8 C++ in-line implementation for solve exec blocks
	22.9 C++ generative implementation for target exec blocks
	22.9.1 Generative procedural execs
	22.9.1.1 C++ syntax
	22.9.1.2 Examples

	22.9.2 Generative target-template execs
	22.9.2.1 C++ syntax
	22.9.2.2 Examples

	22.10 Comparison between mapping mechanisms
	22.11 Exported actions
	22.11.1 DSL syntax
	22.11.2 C++ syntax
	22.11.3 Examples
	22.11.4 Export action foreign language binding

	23. Conditional code processing
	23.1 Overview
	23.1.1 Statically-evaluated statements
	23.1.2 Elaboration procedure
	23.1.3 Compile-time expressions

	23.2 compile if
	23.2.1 Scope
	23.2.2 DSL syntax
	23.2.3 Examples

	23.3 compile has
	23.3.1 DSL syntax
	23.3.2 Examples

	23.4 compile assert
	23.4.1 DSL syntax
	23.4.2 Examples

	24. PSS core library
	24.1 Executors
	24.1.1 Executor representation
	24.1.1.1 Executor component type
	24.1.1.2 Executor group component type

	24.1.2 Executor assignment
	24.1.2.1 Executor claim struct type
	24.1.2.2 Rules for matching an executor claim with an executor group
	24.1.2.3 Claim trait semantics
	24.1.2.4 Executor resources
	24.1.2.5 Executor query function

	24.2 Address spaces
	24.2.1 Address space categories
	24.2.1.1 Base address space type
	24.2.1.2 Contiguous address spaces
	24.2.1.3 Byte-addressable address spaces
	24.2.1.4 Transparent address spaces
	24.2.1.5 Other address spaces

	24.2.2 Address space traits
	24.2.3 Address space regions
	24.2.3.1 Base region type
	24.2.3.2 Contiguous address regions
	24.2.3.3 Transparent address regions

	24.3 Allocation within address spaces
	24.3.1 Base claim type
	24.3.2 Contiguous claims
	24.3.3 Transparent claims
	24.3.4 Claim trait semantics
	24.3.5 Allocation consistency
	24.3.5.1 Example

	24.3.6 Rules for matching a claim to an address space
	24.3.7 Allocation example

	24.4 Data layout and access operations
	24.4.1 Data layout
	24.4.1.1 Packing rule
	24.4.1.2 Little-endian packing example
	24.4.1.3 Big-endian packing example

	24.4.2 sizeof_s
	24.4.2.1 Definition
	24.4.2.2 Examples

	24.4.3 Address space handles
	24.4.3.1 Generic address space handle
	24.4.3.2 nullhandle
	24.4.3.3 sized address space handle

	24.4.4 Obtaining an address space handle
	24.4.4.1 make_handle_from_claim function
	24.4.4.2 make_handle_from_handle function

	24.4.5 addr_value function
	24.4.6 Access operations
	24.4.6.1 Primitive read operations
	24.4.6.2 Primitive write operations
	24.4.6.3 Read and write N consecutive bytes
	24.4.6.4 Read and write packed structs
	24.4.6.5 Executor-based customization of read/write functions

	24.4.7 Target data structure setup example

	24.5 Registers
	24.5.1 PSS register definition
	24.5.2 PSS register group definition
	24.5.3 Association with address region
	24.5.4 Translation of register read/write
	24.5.5 Recommended packaging

	Annex A (informative) Bibliography
	Annex B (normative) Formal syntax
	B.1 Package declarations
	B.2 Action declarations
	B.3 Struct declarations
	B.4 Exec blocks
	B.5 Functions
	B.6 Foreign procedural interface
	B.7 Procedural statements
	B.8 Component declarations
	B.9 Activity statements
	B.10 Overrides
	B.11 Data declarations
	B.12 Template types
	B.13 Data types
	B.14 Constraints
	B.15 Coverage specification
	B.16 Conditional compilation
	B.17 Expressions
	B.18 Identifiers
	B.19 Numbers and literals
	B.20 Additional lexical conventions

	Annex C (normative) C++ header files
	C.1 File pss.h
	C.2 File pss/action.h
	C.3 File pss/action_attr.h
	C.4 File pss/action_handle.h
	C.5 File pss/attr.h
	C.6 File pss/bind.h
	C.7 File pss/bit.h
	C.8 File pss/buffer.h
	C.9 File pss/chandle.h
	C.10 File pss/comp_inst.h
	C.11 File pss/component.h
	C.12 File pss/cond.h
	C.13 File pss/constraint.h
	C.14 File pss/covergroup.h
	C.15 File pss/covergroup_bins.h
	C.16 File pss/covergroup_coverpoint.h
	C.17 File pss/covergroup_cross.h
	C.18 File pss/covergroup_iff.h
	C.19 File pss/covergroup_inst.h
	C.20 File pss/covergroup_options.h
	C.21 File pss/ctrl_flow.h
	C.22 File pss/default_disable.h
	C.23 File pss/default_value.h
	C.24 File pss/enumeration.h
	C.25 File pss/exec.h
	C.26 File pss/export_action.h
	C.27 File pss/extend.h
	C.28 File pss/forall.h
	C.29 File pss/foreach.h
	C.30 File pss/function.h
	C.31 File pss/if_then.h
	C.32 File pss/import_class.h
	C.33 File pss/in.h
	C.34 File pss/input.h
	C.35 File pss/iterator.h
	C.36 File pss/lock.h
	C.37 File pss/output.h
	C.38 File pss/override.h
	C.39 File pss/pool.h
	C.40 File pss/rand_attr.h
	C.41 File pss/range.h
	C.42 File pss/resource.h
	C.43 File pss/scope.h
	C.44 File pss/share.h
	C.45 File pss/state.h
	C.46 File pss/stream.h
	C.47 File pss/structure.h
	C.48 File pss/symbol.h
	C.49 File pss/type_decl.h
	C.50 File pss/unique.h
	C.51 File pss/vec.h
	C.52 File pss/width.h
	C.53 File pss/detail/algebExpr.h
	C.54 File pss/detail/comp_ref.h
	C.55 File pss/detail/FunctionParam.h
	C.56 File pss/detail/FunctionResult.h
	C.57 File pss/detail/Stmt.h

	Annex D (normative) Core library package
	D.1 Package executor_pkg
	D.2 Package addr_reg_pkg

	Annex E (normative) Foreign language bindings
	E.1 Function prototype mapping
	E.2 Data type mapping
	E.3 C language bindings
	E.3.1 Function names
	E.3.2 Primitive types
	E.3.3 Arrays
	E.3.4 Structs
	E.3.5 Enumeration types

	E.4 C++ language bindings
	E.4.1 Function name mapping and namespaces
	E.4.2 Primitive types
	E.4.3 Arrays
	E.4.4 Structs
	E.4.5 Enumeration types

	E.5 SystemVerilog language bindings
	E.5.1 Function names
	E.5.2 Primitive types
	E.5.3 Numeric value mapping
	E.5.4 Arrays
	E.5.5 Structs
	E.5.6 Enumeration types

	Annex F (informative) Solution space

